
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Architecture-Based Software Reliability Modeling

by

Wen-Li Wang

A Dissertation

Submitted to the University at Albany, State University of New York

in Partial Fulfillment of

the Requirements for the Degree of

Doctor of Philosophy

College of Arts & Sciences

Department of Computer Science

2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 3058966

Copyright 2002 by
Wang, Wen-Li

All rights reserved.

___ ®

UMI
UMI Microform 3058966

Copyright 2002 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor. Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Architecture-Based Software Reliability Modeling

by

Wen-Li Wang

COPYRIGHT 2002

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Abstract

Software failure, especially for large-scale software, can lead to a big catastrophe in

many application domains. Therefore, reducing the chances of software failure and

assuring software quality is highly desirable. Software reliability, a measure that

estimates the probability that software will not cause the failure of a system for a

specified time under specified conditions, thus is one of the key quality attributes. With

the increasing sophistication of software infrastructures, the objective of this thesis is to

model the reliability of large-scale software taking into account the architectural

characteristics and complexity.

Traditional reliability models and approaches are subject to address either no

system structures using a black-box approach or only simple homogeneous architectures

using a white-box approach. Therefore, we proposed an architecture-based model, in

which system structures are classified into architectural styles, in order to model the

heterogeneity of different configurations and constraints. Our model extends the

traditional Markov-based reliability models, a white-box approach, to ease the modeling

of the interrelationships among components, and to assist in prioritizing the component

improvement sequence.

However, the extension of traditional Markov-based models limits the modeling to

only history-independent stochastic software behaviors: a problem resulting from the

assumption that a software process follows a Markov process. Our model removes this

fundamental barrier to address execution history, and both probabilistic and deterministic

software behaviors, utilizing grammar rules and the structures o f binomial trees without

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the necessity of history keeping. The grammar rules tackle the execution dependencies

among components, while the structures of binomial trees facilitate the modeling of all

possible execution paths.

Our architecture-based reliability model, taking the styles and grammar as inputs,

not only addresses modem software infrastructures, but also resolves the traditional

modeling limitations. Because of a white-box approach, this model facilitates making

effective design decisions and choosing suitable software components at an early stage of

the software development process. It eliminates the need for retesting the whole software

system, once configurations are changed. Therefore, our architecture-based reliability

model is expected to gain a much wider scope of applications.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Acknowledgements

I would like to sincerely thank my advisor, Prof. Mei-Hwa Chen for her guidance,

assistance, and encouragement in completing this thesis. She taught me how to conduct

research and resolve problems in a systematic way. She triggered my research interests

and helped me go through each tough time. She insisted on accuracy with precise details

and applicability to industry, from which I learned to make my research more complete.

Her patience and kindness lifted me up when I was down. Her ability and enthusiasm in

research strongly stimulate me and amaze me.

I would like to thank the members of my committee - Prof. Daniel J. Rosenkrantz

and Prof. Seth Chaiken. Professor Rosenkrantz gave me much appreciated

encouragement and invaluable suggestions. He patiently discussed with my research

directions and pointed out the potential difficulties of my research work. His rigor and

precision helped me to face tough research challenges. I am also grateful to Professor

Chaiken for his questionings, which helped me to build my research foundations.

I would also like to thank Prof. S. S. Ravi for his assistance. He patiently listened to

my modeling ideas and helped me understand the complexity of algorithms. His detailed

illustrations in computing stimulate not only my research interests, but also my teaching

interests.

I am thankful to my friend Lance Nevard for his humor, and his editing of my

thesis. Mr. Nevard has helped me go through several of my papers and corrected the

ambiguities in my writings. I also want to thank Pat Keller for being my friend and

helping me with a myriad of administrative details.

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Last but not the least, I thank my wife, Mei-Huei Tang, for not just supporting me

for the past several years, but also patiently listening to my crazy ideas. Her sacrifice in

taking care of our lovely baby helped me to complete this thesis smoothly. I also want to

thank my parents for continually supporting my progress and encouraging me not to quit.

I am afraid that I am leaving out many people that have helped me over the years. I

want to thank all of them and feel sorry that I cannot acknowledge each one of them.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Contents

1. Introduction.. 1

2. Literature Review..10

2.1 Software Reliability Modeling...10

2.1.1 Software Reliability Growth M odels..10

2.1.2 Markov-Based Reliability M odels.. 15

2.1.3 Simulations and Experiments... 18

2.2 Overview of Software Architectures...19

2.2.1 Definitions of Software Architecture... 22

2.2.2 Inspiration of Higher-Level D esign..23

2.2.3 Software Architecture Design in the Development Process...............................24

2.2.4 Architectural Styles... 24

2.2.5 Formal Specification M odels...26

2.2.6 Architectural Description Languages (ADLs)... 27

2.2.6.1 Existing ADLs.. 29

2.2.7 Domain-Specific Software Architectures (DSSAs) ...31

2.2.7.1 Motivation and Approaches... 32

3. Model Foundations..34

3.1 Architecture-Based State M odel... 34

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.2 The Modeling of Multiple Initial States and Multiple Final States............................38

4. Heterogeneous Software Reliability Modeling and Component Sensitivity

Measurement.. 40

4.1 Reliability M odeling.. 42

4 .1.1 Batch-Sequential Style... 43

4.1.2 Parallel/Pipe-Filter S tyle..45

4.1.3 Fault Tolerant Style.. 48

4.1.4 Call-and-Retum Style... 51

4.1.5 Heterogeneous Architecture M odeling..53

4.1.6 An Example..55

4.2 Component Sensitivity M odeling.. 61

4.2.1 An Example..65

4.2.2 Discussion..67

4.3 Experiments and a Case Study..68

4.3.1 Experiments..69

4.3.2 A Case Study... 71

5. Deterministic Software Behaviors and Execution History Modeling..............................73

5.1 Limitations of Traditional Markov-Based Reliability Modeling...............................74

5.1.1 Deterministic Software Behaviors... 74

5.1.2 Non-Terminated Processes...78

5.1.3 An Infinite Number of Hybrid Processes...78

5.2 Methodology... 80

5.2.1 Grammar... 83

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2.2 Deterministic Software Behaviors..84

5.2.2.1 Maintaining Execution Paths...84

5.2.2.2 The Modeling of the Number of Calls to a Component...............................88

5.2.3 Non-Terminating Processes.. 92

5.2.4 An infinite Number of Hybrid Processes...92

5.2.4. i Single Basic C luster.. 96

5.2.4.2 Multiple Basic Clusters...102

5.3 Discussion.. 103

5.3.1 Mathematics Computation:..105

5.3.2 Modeling Approach:... 105

5.4 Implementation...107

5.5 An Example.. 110

6. Conclusions...115

6.1 Heterogeneous Software Reliability Modeling and Component Sensitivity

Measurement...116

6.2 Deterministic Software Behaviors and Execution History Modeling......................117

Appendix A. Discrete Time Markov Models... 120

Appendix B. A Homogeneous Markov-Based Reliability M odel...................................... 123

Appendix C. An Example of Traditional Markov-Based Software Reliability Modeling

 126

C. 1 Using Probability T heory..127

C.2 Using Homogeneous Markov-Based Reliability M odel...................................... 127

Bibliography.. 130

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Figures

Figure I: One super-initial state S1 and one super-final state SF ... 39

Figure 2: Batch-sequential style...44

Figure 3: Parallel or pipe-filter style... 46

Figure 4: Fault tolerance style.. 49

Figure 5: Call-and-retum style... 52

Figure 6: Architecture view with 15 components vs. state diagram with 13 states............. 56

Figure 7: (a) Deterministic transition diagram and (b) probabilistic transition diagram for

component running sequence — »...76

Figure 8: Infinite control transfer problem... 79

Figure 9: Component c, calls k components cx\, cx2 , ..., c t*...86

Figure 10: Three types of calling scenarios... 89

Figure 11: An infinite number of hybrid processes...95

Figure 12: A starting non-terminal C„ denoted as C,*, invokes k times of C„ denoted as

C , \C f C*..97

Figure 13: C ,\ C 2, C* can each further invoke another k non-terminals...................... 97

Figure 14: (a) The binomial tree Bm is represented. A triangle represents a rooted subtree,

(b) Node depths in B4 are shown... 98

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 15: The transformation scheme for a break-point component C, invoking....k non

terminals C, 99

Figure 16: (a) A loop based on a basic cluster (b) The transformation by using fl2

binomial tree...100

Figure 17: The transition diagram with all terminals..101

Figure 18: The break-point component c\ has two basic clusters c\ o Ci e$ C\ c4and ci q Q q

 102

Figure 19: Terminal lists vs. a state diagram ...109

Figure 20: A state diagram for sample software with one basic cluster............................. 112

Figure 21: A sample system... 127

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Tables

Table I: Different scope of use among A D L s..29

Table II: Tool support for DSSA generation.. 33

Table III: Simulations as validation to our model results.. 70

Table IV: Validation results for a stock system and heterogeneous architectures............. 70

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1

Introduction

“I t ’s fine to celebrate success but it is more important to heed the lessons o f failure”,

stated Bill Gates (The Guardian, 27 April 1995). Software failure can lead to a big

catastrophe in many application domains, such as aviation, business, finance, and military

actions, etc. Take the aerospace domain for example. NASA's 1999 Mars Exploration

Program suffered a $125 million loss when the thrusters on the Mars Polar Lander

shutdown above the surface causing the vehicle to crash. Although the crash was

attributed to human communication errors, software failures occurred when two

microprobes of Deep Space 2, which should have been released from the Lander before

the crash, were never activated.

Software failure is “the inability of a system or system component to perform a

required function within specified limits” [35]. Although some factors to software

failures are related to management errors, many are closely related to software

complexity and its reliability. In [22], several software failure stories were discussed

regarding poor software qualities that fail to carry out the required functions. The

following three cases demonstrate that software failures may not only cause huge

economic loss, but can also jeopardize human lives. Nevertheless, with early and

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

reasonable investment on maintaining good software quality, the chance of software

failures is very likely reducible.

■ The first case is one of the most costly commercial systems “Confirm project” ,

which resulted in a $213 million loss. This project, based on the successful story

of American Airlines’ SABRE computer reservation system, started out as a joint

venture but ended up as a disaster. The major problems with Confirm were

associated with the operation of the TMF sub-system, a bridge between two

mainframes. This TMF sub-system was insufficient to handle the complexity of

providing an application-to-application link between the mainframe processors for

sixty applications. Essentially, the TMF did not work correctly and the resulting

database was apparently irrecoverable after a crash.

■ The second case depicts that an early corrective action is possible to prevent a big

loss caused by software failure. The show business based Performing Right

Society (PRS) in London failed in developing their PROMS project, which was

intended to collect intellectual property royalties for copyright holders. The cost

of software development was over $12 million, and this big loss due to software

failure was very likely preventable by taking a cheaper $0.3 million corrective

action at an early stage of the software development life cycle to reveal the

possible faults.

■ The third case illustrates the importance of software quality, where low quality

software delays the processing or response to emergencies; thus puts human lives

at risk. The big disaster was the London Ambulance Service (LAS) Computer

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Aided Dispatch system. The system design was for normal operations but could

not address imperfect situations. As a result, ambulances failed to arrive at an

incident, arrived late, or turned up two or more at a time.

Software engineering aims at ensuring software quality to meet user needs. To

evaluate the quality of large-scale software, the emphasis is on how good the components

of a software system can incorporate correctly and generate expected outcome.

Therefore, we study configurations of software components and their impact on overall

system reliability. The configurations can be different types of system structures, in order

to satisfy user requirements. If the reliability or quality of software cannot achieve a

desired level, it is necessary to invest more labor to make further improvements, such as

more testing efforts, better document keeping, or new component upgrades. Although the

efforts to enhance software reliability or quality can be expensive, however like the

PROMS project, investing 0.3 million of corrective action may save 12 million dollars

loss from software failure, and successful software can very possibly bring in significant

profits. Therefore, the investment in software reliability enhancement can be extremely

fruitful.

Software reliability is often defined as “the probability that software will not cause

the failure of a system for a specified time under specified conditions” [35]. This type of

measurement is sensitive to time. When time is not an issue, software reliability is also

accepted as the probability of failure-free operation of a computer program for a typical

set of user inputs in a specified environment [14], This typical set of user inputs exercise

the possible software processes. Other popular measures concerning software reliability,

such as Mean Time To Failure (MTTF) and failure intensity, which is the expected

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

number of failures per unit time interval, are also frequently used. To assure high quality

software, software reliability measures are thus utilized as one of the important quality

attributes to evaluate software quality.

For more than three decades, software reliability modeling has been studied and a

number of analytical models and simulation techniques were proposed for estimating the

reliability of software systems. These existing approaches can be roughly classified into

three categories. The first category is a time domain approach, also called software

reliability growth models (SRGMs) [21,58]. SRGMs are a statistical approach, which has

the form of a random process that describes the behavior of failures with time. SRGMs

are a black-box approach, which is not concerned with system structures. These models

utilize test data to estimate software reliability, and assume testing is conducted using

random testing. The test cases are created based on an operational profile. In order to

apply SRGMs, the distribution function for the random process, which describes the

behavior of failures with time, is first observed from the test results. Based on this

distribution function, software reliability is computed accordingly. Therefore, SRGMs

rely on test data and the distribution function decides the models for software reliability

measurement.

Unlike SRGMs, the second category is discrete time or discrete event Markov-

based reliability models, using a white-box approach. These models are concerned with

system structures and are capable of addressing certain interactions and interrelationships

between two software modules. The discrete time Markov-based reliability models are

suitable for modeling simple homogeneous software, such as software with sequential

execution, branching, and looping system structures. However, software can have more

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

sophisticated infrastructures, such as parallel computation to enhance performance, fault

tolerance to improve reliability, and various interactions and intercommunications, etc. In

order to easily utilize the discrete time Markov models, traditional modeling techniques

assumed that a software process follows a Markov process, in which the next software

module is affected by the current module only regardless of who were the ancestors.

Unfortunately, this assumption limits the modeling of complex system structures,

heterogeneous architectures, and history-dependent execution paths.

Beside these two types of analytical models, the third category is based on

simulations or experiments. Discrete-event simulation approaches were proposed to

simulate software behaviors through predefined discrete events, where the transition from

one step to another is based on a triggered event and nothing occurs between events.

Experiments were also conducted to estimate software reliability using software

components. The system reliability is the average over all test runs. However, simulation

or experimental approaches are very time-consuming with narrower application domains,

and the estimation results may vary due to data variation caused by random variables.

Despite the available approaches and models, we develop an architecture-based

software reliability model. We define our reliability measure as the probability of failure-

free operation of an overall software architecture for a typical set of component

interactions in a specified environment. This typical set of component interactions is used

to exercise possible execution paths.

Generally speaking, the bigger the disaster caused by software failures is

commonly the larger the software systems. With the increasing complexity of software

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

infrastructures, our primary objective is to model large-scale software, taking into

account the architectural characteristics and complexity. Typically, large-scale software

is complex, and composed of a variety of components, and interfaces. The components

and interfaces can form different configurations and each configuration can have

different topologies and constraints. This results in heterogeneous system structures. At

the design phase of large-scale software, the major concerns are not data structures or

algorithms, but the overall system structures. Therefore, how to configure the global

system, decompose interacting subsystems, designate component functions, classify data

communication protocols, evaluate complete system, and select a better-fit design are the

major issues of software architecture. Because changing the architectural designs at a

later phase of the software life cycle can be difficult and expensive, a correct decision

needs to be made in the early design phase of the software life cycle.

Therefore, the second objective of our model is to support decision-making in the

choosing of a better-fit design, early in the software process. Since SRGMs rely on the

test data or the distribution of the failure process, they are not suitable for such an early

prediction purpose. On the other hand, the traditional discrete time Markov-based

reliability models are a white-box approach that can support this goal of providing a

relative analysis result. Unfortunately, the traditional models can only model simple

system structures so that if systems have complex design structures, the modeling will be

difficult.

The third objective is to accommodate frequent component upgrades or updates,

due to easy component plug-and-play. With the prevalence of today’s component-based

software, software components can be developed separately, remotely, and by different

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

groups. The interfaces for interactions and intercommunications are well defined in order

for components to communicate with each other. In addition, the commercial-off-the-

shelf software (COTS) further facilitates the ease of acquiring new software components

for use. Therefore, the locus of adapting frequent component upgrades or updates is to

configure the newly available components with the existing components, realize the

limitations of their configurations, and define the interface protocols among the new set

of components. To accommodate the frequent component upgrade or update, the black-

box approach of SRGMs will require the retesting of the whole program, which is

undesirable for component-based software reliability measurement.

To achieve these three objectives, we introduce a two-phase approach for

developing our architecture-based software reliability model.

■ Phase one makes use of architectural styles to identify system structures in a

formal way and resolves the modeling limitations of homogeneous Markov-based

reliability models to address heterogeneous software behaviors. The architectural

styles serve as high-level design patterns, which regulate the configurations and

constraints. A new state model is developed to model both homogeneous and

heterogeneous characteristics of architectural styles, in order to take into account

more complex system structures, such as parallel computing, client-server

architecture, and fault tolerance, etc.

■ The second phase is to remove the fundamental barrier of traditional Markov-

based reliability models that assume a software process follows a Markov process.

A Markov process implies that the next state depends probabilistically on the

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

present state only and is independent of execution history. Although a Markov

model is a stochastic model, good for modeling uncertainties, traditional Markov-

based models are incapable of addressing execution history and non-probabilistic

system behaviors. Phase two significantly broadens the application domains by

enabling reliability measurement on software that does not have Markov

properties.

Our architecture-based software reliability model, a white-box approach based on

the discrete-time Markov models, can provide a guideline for choosing a relatively better-

fit architecture design by changing and exercising different architectural styles into a

system. This supports the decision making for choosing alternative designs or

components to meet reliability requirements and to lower the chance of future software

failure. The model overcomes the obstacles of traditional approaches to modeling

complex system structures as well as the heterogeneity of large-scale software. By

utilizing architectural styles and extending traditional discrete time Markov-based

models, our architecture-based reliability model can address both homogeneous and

heterogeneous component interactions and interrelationships, and examine the critical

components to the overall system reliability. By removing the fundamental barrier, the

model can address execution history as well as both probabilistic and deterministic

system behaviors. This not only indicates to us which architecture to pursue, but also

prioritizes the component improvement sequence. As improving software reliability

improves software quality, we thus reduce the chance of software failure.

In this thesis, Chapter II presents the literature reviews on existing software

reliability models and approaches, and makes sense of the inspiration, evolution and

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

significance of architecture design as well as its position in the software development life

cycle. In Chapter m , we will discuss the utilization of Markov models to build the

foundation of our architecture-based reliability model. Chapter IV demonstrates our

probabilistic architecture-based reliability model, which is able to take into account

software architecture and uncertain component transitions. Chapter V will introduce

history-dependent deterministic software reliability modeling to resolve the limitations of

the probabilistic architecture-based reliability model. Chapter VI draws the conclusions.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2

Literature Review

2.1 Software Reliability Modeling

Software reliability modeling has been studied for more than three decades. To measure

software reliability, the existing approaches can be roughly classified into these three

categories: software reliability growth models (SRGMs), Markov-based reliability

models, and simulations and experiments.

2.1.1 Software Reliability Growth Models

Software reliability growth models usually address the failure behaviors of a software

system as random processes. The models cover software either with repairs, or without

repairs, and commonly assume that failures are independent of each other. Here presents

the historical development of software reliability growth models [21,58]:

Hudson [34] conducted the first study of software reliability. He viewed program

errors as a birth or death process. A fault generation is a birth, while a fault correction is a

death. The transition probabilities are related to the birth and death functions. He

confined his work to pure death processes and assumed that the rate of fault detection

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

would increase with time. It was shown that the number of faults detected follows a

binomial distribution.

Jelinski and Moranda [38] as well as Shooman [73] made another major step. They

assumed a hazard rate for failures was constant and proportional to the number of faults

remaining. The hazard rate changes at each fault correction by a constant amount, but is

constant between corrections. Moranda [56] later proposed two variants of the Jelinski-

Moranda model. The first has a hazard rate decrease in steps that form a geometric

progression. The second further has the decrements occur at fixed intervals rather than at

each failure correction.

Schick and Wolverton [64] proposed another model, assuming that the hazard rate

was proportional to the product of the number of faults remaining and the time.

Therefore, the size of the changes in hazard rate increases with time. Wagoner [84] had a

slightly different assumption that the hazard rate was proportional to the product of the

number of faults remaining and a power of the time. The power can be varied to fit the

data.

Schneidewind [66] approached software reliability modeling starting from an

empirical point of view. He found that the best distribution for reliability measurement

varied from project to project. Therefore, he suggested not using point estimates but the

confidence intervals for the parameters. In [67], he viewed fault detections per time

interval as a non-homogeneous Poisson process, a non-linear function of time, with an

exponential mean value function.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Musa [57] presented an execution time model of software reliability that broke new

ground in several ways. He claimed that software reliability measurement should be

based on processor execution time not the calendar time. He observed that when failure

rates were taken based on execution time, the fault correction rate was typically

proportional to the hazard rate. The result is the aforementioned variability, noted by

Schneidewind, from project to project did not occur. This approach became universal and

easier to apply.

Littlewood and Verrall [47] proposed a Bayesian approach to software reliability

measurement. They modeled the hazard rate as a random variable instead of a function of

the number of faults remaining. Therefore, software reliability is viewed as a measure of

strength of belief that a program will function successfully, which contrasts with the

classical view of reliability as the number of successful executions out of the total

number of executions. The concept of the hazard rate as a random variable can

characterize reliability change.

Littlewood [50] later proposed a different fault model, a variant of the general

Littlewood-Verrall model. The hazard is still viewed as a random variable with one

hypothesis that failures occur with different frequencies. Typically, faults that occur most

frequently will be detected and corrected first. He considered that uncertainties in

reliability growth might result more from uncertainties in the relative frequencies of

execution of different input states than uncertainties in fault correction.

Goel and Okumoto [28], based on the assumptions of those of Jelinski and

Moranda, described failure detection as a non-homogeneous Poisson process (NHPP)

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

with an exponentially decaying rate function. Both the cumulative number of detected

failures and the number of remaining failures are Poisson processes. Yamada, Ohba, and

Osaki [86] modified the cumulative number of detected failures in the NHPP model to an

5-shaped curve. In addition, Goel and Okumoto [29] also developed a model for

imperfect debugging from the modification of Jelinski-Moranda model. They viewed

debugging as a Markov process, with appropriate transition probabilities among states.

Kremer [41] extended this model, accepting the idea that the repair activity has the

possibility of introducing new faults.

Before late 1970s, most of the studies are looking for different modeling

possibilities. In the early 1980s, the focus moved to the comparison of software reliability

models to choose better ones. Iannino et al. [36] worked out a consensus on the

comparison criteria. Musa and Okumoto [39] clarified and organized comparisons, and

suggested possible new models. The following shows the classification scheme

developed by Musa, Iannino, and Okumoto [58] for software reliability models, which

are classified in terms of five different attributes:

1. time domain: calendar time or execution (CPU or processor) time.

2. category: the number of failures that can be experienced in infinite time is finite

or infinite.

3. type: the distribution of the number of failures experienced by time t.

4. class (finite failures category only): functional form of the failure intensity in

terms of time, and

5. family (infinite failures category only): functional form of the failure intensity in

terms of the expected number of failures experienced.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Based on the above classification scheme, software reliability models can be

classified into the following groups:

1. Exponential Failure Time Class o f Models, including Jelinski-Moranda model

[38], non-homogeneous Poisson process (NHPP) model [29], Schneidewind’s

model [67], Musa’s basic execution time model [57,58], and hyper-exponential

model [44,87].

2. Weibull and Gamma Failure Time Class o f Models, including binomial type

Weibull model [64], and Yamada’s 5-shaped reliability growth model [86].

3. Infinite Failure Category Models, including Duane’s model [18], Moranda’s

Geometric model, and Musa-Okumoto logarithmic Poisson [60].

4. Bayesian Models, including Littlewood-Verrall reliability growth model [47],

Kyparisis and Singpurwalla’s Bayesian non-homogeneous Poisson process model

[43], and Liu’s Bayesian geometric models [51], etc.

The classification and comparisons lead to the development of Musa-Okumoto

logarithmic Poisson execution time model [60] with simplicity and good predictive

validity. This model is based on a non-homogeneous Poisson process with a logarithmic

failure intensity function. This logarithmic function decreases exponentially with

expected failures experienced, so that the failures repaired in an early stage reduce the

failure intensity more significantly than those in a late stage.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Reliability Growth Models (SRGMs) are a time domain model,

employing test history to predict mean time to failure (MTTF) or the probability o f

failure free operation fo r a specified period o f time for software [21,58], SRGMs assume

testing is conducted using random testing, and the test cases are created based on an

operational profile. Using a black-box approach, these models are not concerned with

system structures. Therefore, if a change or an update occurs to the structure or software

components, the models require re-testing of the whole software system. With the

characteristics of easy component plug-and-play, upgrade, or update, software

components ease the software development of large-scale software, but hinder the use of

SRGMs due to the repeated testing efforts.

2.1.2 Markov-Based Reliability Models

A stochastic process is a collection of random variables. If each variable represent

the state of a system at some specific index, there is a conditional probability of being in

each state. A finite-state Markov process is a stochastic process withholding the

following conditions.

1. There is a finite set of states.

2. The transition to the next state will depend probabilistically on the present state

alone and is independent of execution history.

3. The transition probability from one state to another does not change over time.

4. A set of initial probabilities is defined for all states.

Markov models can be classified based on model types or model applications. By

model types, a Markov model can be either a discrete Markov model or a continuous

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Markov model. Both discrete and continuous Markov models can be either homogeneous

or non-homogeneous. Homogeneous model refers to constant or time invariant transition

rates. Non-homogeneous model on the other hand refers to time variant transition rates. If

a Markov model is continuous time, the transitions can occur at any instance of time and

the transition probabilities follow a continuous distribution. If a Markov model is discrete

time or discrete event, the transitions occur only at discrete intervals of time or at discrete

events, and the transition probabilities follow a discrete distribution.

By model applications, the application of a Markov model can be categorized into

repairable systems or non-repairable systems. A repairable system is continuously

available for repair, while a non-repairable system is not available for repair once in the

operation. Repairable systems contain cycles to restore a previous state based on a repair

rate, which can be a function of software complexity, or other variables. The repair rate

can be fixed or vary with time. For repairable systems, both reliability and availability

can be computed. Non-repairable systems have no cycles to traverse back to a state

previously visited. For such systems, reliability or reliability for periodically renewed

system can be computed.

Furthermore, there is another type of model, the semi-Markov model, which is

closely related to the Markov model. The semi-Markov model [62] is basically like the

Markov model from the state transitions point of view. Unlike the Markov model, the

semi-Markov model extends the usual discrete-time Markov model by incorporating a

continuous model of time. There is a random or constant amount of time between state

changes, and this local holding time can be any distribution. Therefore, a process can be

held in a state for a positive amount of time by a holding probability distribution function.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Using semi-Markov models thus can facilitate the production of the effect of competing

events in fault handling, which is contrast to instantaneous coverage that does not.

Most of the reliability models discussed in Section 2.1.1 can be described in terms

of a continuous-time Markov process, except for the geometric model of Moranda [56]

and the Bayesian model of Littlewood and Verrall [47]. Markov processes are useful in

modeling random behavior of software in time, such as faults remaining at time t and

failures experienced by time t.

From a number of studies [14,31,44,48,85] and tools [39] adopting Markov models

to measure the reliability of modular software, Cheung [14] proposed a user-oriented

reliability model to measure the reliability of service that a system provides to a user

community. A discrete Markov model was formulated based on the knowledge of

individual module reliability and inter-module transition probabilities. Sensitivity

analysis was also conducted to determine modules most critical to system reliability. In

this model, module behaviors, including the sequential, branching, and cyclic executions,

were taken into account. In Littlewood's reliability model [48], a modular program is

treated as transfers of control between modules following a semi-Markov process. Each

module is failure-prone, and different failure processes are assumed to be Poisson

distribution. The KAT Approach, proposed by Laprie et. al [44], was developed for

modeling and evaluating the reliability and availability of multi-component systems from

the knowledge of the reliability growth of their components. A knowledge-action

transformation approach was presented to account for reliability growth phenomena,

which enables the estimation and prediction of the reliability and availability of multi-

component systems. The transformed action model is a transformation of classical

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Markov models into other Markov models that account for reliability growth. This model

can take simple system structures into account but the state expansion always goes up to

non-polynomial number of states for an n-component system.

Markov-based reliability models assume that the control transfers among software

components follow a Markov process. This implies that the future of the process depends

only on the present state and is independent of execution history. Therefore, if a software

process is assumed be a Markov process, the reliability models may still be able to handle

software with simple homogeneous sequential execution and branching transitions, but

are insufficient to model sophisticated structures and heterogeneous architectures.

2.1.3 Simulations and Experiments

In addition to analytical models, simulations and experiments were developed to

predict and measure software reliability. Gokhale et al [30] proposed a discrete-event

simulation to capture a detailed system structure and to study the influence of separate

factors in a combined fashion on dependability measures. Krishnamurthy and Mathur

[42] conducted an experiment to evaluate a method, Component Based Reliability

Estimation (CBRE), to estimate software reliability using software components. CBRE

involves computing path reliability estimates based on the sequence of components

executed for each test input and the system reliability is the average over all test runs. Li

et al [46] presented a methodology and accompanying toolset, W2S, for generating a

simulator from a semi-formal architecture description, which allows an analysis of the

system's reliability based on it’s simulated behavior and performance. Gokhale et al [31]

predicted architecture-based software reliability using a testing-based approach, which

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

parameterized the analytic model of the software using measurements obtained from the

regression test suite, and coverage measurements.

The above approaches are able to model certain system structures, but are usually

expensive and time-consuming especially when applying to structure changes, and the

application domains can be limited.

2.2 Overview of Software Architectures

Large-scale software systems particularly bring the revival interests in high-level design

and drive the software architecture renaissance. Generally speaking, software architecture

describes the organization or configuration of the overall system. Architectural decisions

of software are usually made at the early stage of the software development life cycle.

Typically, it is very difficult and expensive to change the decisions at the later phase.

There have been many topics dedicated to the software architectural level of design

including module interconnection languages (MILs), architectural styles identification

and description, form al specification models o f component integration mechanisms,

architectural description languages (ADLs), and frameworks fo r domain-specific

systems.

The first MIL, proposed by DeRemer and Kron [17] in 1975, was designed to

support the connection effort between modules. They argued that the modules creation

and modules interconnection were different structural design efforts that could be

designed independently. In general, flexible and high-level connections between

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

subsystems help to build composable systems. However, MILs only support low-level

interactions and can not reuse patterns of compositions.

Garian and Shaw [27] elaborate the taxonomy of the broadly used patterns or

idioms that emerge as some common architectural styles. An architectural style

constrains both the system components and the formal relationships among the system

components. It also includes the topological constraints on architectural descriptions.

Since a style defines and limits the kinds of design components and their formal

relationships, the architectural styles make easy understanding a system's configuration,

and also permit specialized, style-specific analysis, etc.

Formal specification models are designed to solve the problems of many informal

approaches. Inverardi and Wolf [37] brought up an idea using the chemical abstract

machine model as the formal model for formal specification and analysis of software

architectures. The architectural elements are represented as “molecules”, and the floating

molecules can only interact according to explicitly stated reaction rules. Abowd, Allen,

and Garian [3] choose different formal approach by taking architectural styles as an

interpretation from syntax to semantics and outline a framework not only allowing the

analysis within different architectural styles, but also providing a template for prescribing

new architectural styles. Such formalism can assist in describing and analyzing software

systems.

Architectural description languages (ADLs) compensate the inadequacy for

architectural descriptions of today’s programming languages by utilizing better notations

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

to describe high-level views of component relationships, as well as their combinations

and interactions.

For the domain-specific software architectures (DSSAs), there exists an idea that a

common architecture can be extracted from a collection of related systems, thus new

systems related to the specific problem domains can be built by using the common shared

architectures. Such an idea may reduce the time and cost of producing specific

application within a supported domain where frameworks are already available to

increase product quality, improve manageability, and support software reuse, etc. There

have been numerous industrial and defense research projects dedicated to creating

domain-specific architectural styles or reference architectures for specific problem

domains.

Software components, architectural styles, formal specification models, ADLs, and

DSSAs are increasingly important to the emerging field of architectural level of design.

They can provide a different meaning and utilization value for various sorts of people,

based on their concerns. Typically, customers care about budget estimation, risk

assessment, and progress tracking in order to reduce cost. Users care about requirement

consistency, future needs accommodation, performance, and inter-operability.

Developers expect sufficient details for design, references for selecting and assembling

components, and interoperability maintenance of existing systems. Software engineers

are concerned about requirements traceability, software reliability, trade-off analysis, and

consistency of architecture. For software maintainers, they care about guidance on

software modification, and guidance on architecture evolution. With the flexibility of

component plug-and-play, the regulations of architectural styles, the verifications of

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

formal models, the descriptions and prototyping of ADLs, and the reusability of DSSAs,

the goal of software architecture to provide multiple views [55,61] to satisfy different

individuals with different concerns can be fulfilled.

2.2.1 Definitions of Software Architecture

Garian and Shaw [27] define software architecture as composed of components,

connectors, and configurations. Components define the locus of computation. Connectors

define the interactions (e.g. procedure call, data flow, implicit triggering, message

passing, shared data, and instantiation [71]) between components. Configurations define

the topology of the components and connectors.

From Perry and Wolf [61], software architecture is defined as a set of architectural

elements that have a particular form, and an underlying rationale. Architectural elements

include processing, data, and connecting elements. Form consists of weighted properties

constraining the choice of architectural elements in addition to weighted relationships

that constrain the interaction and organization of different elements in the architecture.

Rationale captures the motivation for the choice of architectural style, elements, and the

form. An architectural style constrains both the system components and the formal

relationships among the system components. It also includes the topological constraints

on architectural descriptions.

Jones [40] describes software architecture as a structure composed of components,

and rules characterizing the interaction of these components.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2.2 Inspiration of Higher-Level Design

For large-scale systems, the major subject is usually subsystems and their interactions.

This level of organization is the software architectural level, a high-level architecture

design stage. Abstractions are the techniques to implement high-level components and to

catch the intrinsic properties of subsystems and their interactions.

The essence of abstraction is to first recognize a pattern. Patterns are the way of

capturing software developers’ experiences and then communicating this information to

the programmers. Abstractions can be used to identify recurring situations and suggest

“which decisions to make, when and how to make them, and how they are the right

decisions” [19]. Patterns also have strength for future reuse as well as to prevent the

waste of time and energy, reinventing development processes to solve old problems.

After the recognition of a pattern, another aspect of abstraction is naming and

defining the pattern, analyzing it, finding ways to specify it, and providing some way to

invoke the pattern, by its name, without error-prone manual intervention [68]. This kind

of process has some benefits, for it covers the implementation details of patterns, reduces

the possibility of human description errors, and simplifies comprehension of the results.

The abstraction makes for easy communications and accurate understanding of overall

system structures at a higher level.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2.3 Software Architecture Design in the Development Process

The vocabulary gap between requirements and programming is substantial and requires

advanced models and notations for the intermediate step; in which case, software

architecture emerges to fill this gap. [72]

In the waterfall model, the software architectural level fits between requirements

and design. Software architecture focuses on high-level design, whereas the original

design stage in the waterfall model focuses on translating requirements and architecture

into low-level design [23].

In the software development life cycle, software architecture can be used as a basis

for design to satisfy all functional requirements. It facilitates the early detection of reuse

opportunities at the architecting stage. In addition, software architecture can serve as a

framework for accommodating the change of life-cycle requirements. It can be used as a

basis for software maintenance to prevent architectural erosion and architectural drift.

“Architectural erosion is due to violations of the architecture”, and “architectural drift is

due to insensitivity about the architecture” [61].

2.2.4 Architectural Styles

An architectural style defines a family of systems in terms of a pattern of structural

organization, and determines the configuration of components and connectors that can be

used in instances of that style, together with a set of constraints on how they can be

combined [27]. “An architectural style encapsulates important decisions about the

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

architectural elements and emphasizes important constraints on the elements and their

relationships.” [61]

Typically, an architectural style abstracts elements and formal aspects from various

specific architectures, so it is less constrained and less complete than a specific

architecture. A number of common architectural styles [24,70,81] have been identified

based on aforementioned pattern recognition and abstraction processes and new styles

are still emerging [53,54,77]. Nevertheless, different architectural styles may also be

combined into a single design as a heterogeneous architectural style or a hierarchical

style with each layer designed in different style. Using architectural styles as architectural

representations can promote design reuse, lead to significant code reuse, improve the

realization of complicated software systems, and permit specialized style-specific

analysis, etc. [24,27]

The following shows a number of identified and commonly used architectural

styles [27,81]:

■ Data Flow Style

- Batch Sequential.

- Pipes and Filters. [4,5,68,72] (e.g., Unix pipes, signal processing.)

■ Call and Return Style

- Main Program and Subroutines (Explicit Invocation)

- Hierarchical layers (e.g., OS kernels, ISO OSI.)

- Data Abstraction and Object-Oriented Organization

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

- Client-Server (e.g., File servers, distributed databases)

■ Independent Components

- Communicating processes (e.g. Many distributed systems.)

- Event-based, Implicit Invocation (e.g. tools such as editors and variable monitors

register for a debugger’s breakpoint events.)

■ Virtual Machines

- Rule-based systems (e.g., Expert systems.)

- Table Driven Interpreters (e.g., Blackboard shell, rule-based systems)

■ Data-Centered Systems

- Transactional Database Systems

- Repositories (e.g., Blackboard Systems)

■ Other Architectures:

- Parallel Computing Architectures

- Fault Tolerant/Backup Architectures

- Heterogeneous Architectures [2,69,72]

- Domain-Specific Software Architectures [55,79]

2.2.5 Formal Specification Models

Formal specification models are used to solve the problems of many informal

approaches. The main objective of these models is to support abstraction idioms or

architectural styles commonly used by designers, and to specify packaging properties and

functional properties of components. In addition, these models provide an explicit and

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

localized connector including the rules for component interactions, defining an

abstraction function to map from code or lower-level constructs to higher-level constructs

in respect to externally developed construction and analysis tools [72].

Formal specification models can be served as reusable frameworks if they are

extensible and adaptable. The models are extensible when they are easy to use to modify

the specification so as to handle new variations in the functions. If the models are

relatively easy to use to adapt the specification to different applications, they are

adaptable. [24]

The development of formal specification models [3,37,68] involves four steps. The

first is informal description, which simply describes the purpose of elements and general

domain of utility. The second formalizes abstract syntax for architectures as the basis for

specification. The third, for any given style, defines the semantic model to capture the

meanings of primitive elements and the rules for composition. The last step demonstrates

analysis within and between formally defined architectural styles.

2.2.6 Architectural Description Languages (ADLs)

Software architecture is concerned with high-level design issues, and architectural

description languages lay the formal basis for this architecting stage of the life cycle.

These higher-level languages appear to compensate for the weaknesses of existing

programming languages on structure descriptions, and to try to solve the essential

problems of software engineering, such as complexity, conformity, changeability, and

invisibility [12].

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Architectural description languages are expected to directly support reuse or

megaprogramming, rapid prototyping (e.g. the Rapide prototyping language and toolset

[55]), reengineering, early consideration of system non-functional properties, and

comprehension of the overall system. Megaprogramming is the practice of building and

evolving computer software component by component. [11]

An ideal architectural description language [1,71] is supposed to provide the

following kinds of properties: composition, abstraction, reusability, configuration,

heterogeneity, and analysis.

■ Composition: It should be possible to describe a system as a composition of

independent components and connections.

■ Abstraction: It should be possible to describe the components and their

interactions of a software architecture in a way that clearly and explicitly

prescribes their abstract roles in a system.

■ Reusability: It should be possible to reuse components, connectors, and

architectural patterns in different architectural descriptions, even if they were

developed outside the context of the architectural system.

■ Configuration: Architectural descriptions should localize the description of

system structure, independent of the elements being structured. They should also

support dynamic reconfiguration.

■ Heterogeneity: It should be possible to combine multiple, heterogeneous

architectural descriptions.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ Analysis: It should be possible to perform rich and varied analyses of

architectural descriptions.

2.2.6.1 Existing ADLs

Due to the existing languages’ notations, which fail to provide architectural design and

description, several new languages with improved notations have been proposed. They

were designed for different kinds of scopes of use. Some of them are general purpose,

others are dedicated to architectural or system structure description, and the remaining

groups are developed for specific domain problems, as shown in Table I. [1]

Scope Examples

General Purpose Z, Prolog

Architecture/System Description Rapide, DICAM, Unicon, Wright, UNAS, Aesop

Domain-Specific MetaH, ControlH

Table I: Different scope of use among ADLs

■ DICAM [79], designed by Teknowledge Federal Systems, inc., describes a

system’s architecture using a collection of schemas. It starts with the built-in types

as a foundation, supplies technology for rapid development of high-performance

intelligent controllers, and supports tools for graphical and textual entry of

architecture.

■ Wright [6,8], developed at CMU by Allen and Garlen, describes general system

architectures, concerned with interactions between components. It detects

connector-component type mismatches, and uses Communicating Sequential

Processes (CSP) [7,33] as port and role protocols.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ ControlH [10,20], designed by Honeywell, is specialized for real-time guidance,

navigation and control software, allows modeling and analysis of continuous,

time-varying signals, and supports tools including Ada generator.

■ MetaH [10,83], designed by Honeywell, is specialized for real-time

multiprocessor embedded software, concerned with scheduling and reliability, and

dedicated to systems constructed out of pre-deciared classes. It also has heavy tool

support as ControlH.

■ Rapide [52,83], proposed at Stanford University by Luckham et al., describes

general system architectures, provides a module description language, uses object-

oriented or event-based components for system designs, and supports rapid

prototyping through simulation of the architecture.

■ Unicon [72], developed at CMU by Shaw et al., describes software architectures

in general, includes rich set of built-in components and connectors, has interfaces

for both components and connectors to be associated with implementations, and

supports external analysis tools.

■ UNAS [63], designed by TRW Space & Defense, includes very simple constructs

such as sockets, tasks and circuits but no formal ADL, has been modeled in Z

language, and supports rapid prototyping of architectures.

■ Aesop [26] describes software architectures in general, supports the definition of

new architectural styles as a system of object types, and provides an operational

basis for style definition.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ Some other ADLs include Z [74,75], LILEA nna [80,83], and QAD [83], etc.

2.2.7 Domain-Specific Software Architectures (DSSAs)

“A domain-specific software architecture is a process and infrastructure that supports the

development of a domain model, reference requirements, and reference architecture for a

family of applications within a particular problem domain. The expressed goal of a DSSA

is to support the generation of applications within a particular domain.” [81]

A domain model implies the “terminology and semantics characterizing elements

and relationships in a domain.” [76] “A domain is defined by a set of common problems

or functions that applications in that domain can solve or do. Also, a domain is typically

characterized by a common jargon or ontology for describing problems or issues that

applications in it address.” [81] Furthermore, the domain model defines the terms used to

express requirements and evaluate systems. The purpose of a domain model is to provide

individuals with a means of developing or maintaining applications in a domain so as to

understand the various aspects of the domain. [81]

“Reference architecture is a (generic) software architecture for a family of

application systems.” [82] It consists of a reference architecture model, configuration

decision tree, architecture schema or design record, reference architecture dependency

diagram (topology), components interface descriptions, constraints, and rationale.

“Reference requirements are the (generic) behavioral requirements for applications

in a domain.” [82] Besides specifying the functional requirements identified in the

domain model, it also contains non-functional, design, and implementation requirements.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2.2.7.1 Motivation and Approaches

The primary motivation of software development using DSSAs is to reduce time and cost

of producing specific application systems within a supported domain as well as increase

product quality. In addition, DSSAs improve manageability and productivity, position for

acquisition of future business, handle complexity as well as reliability, and replace

custom fabrication by construction from components (i.e. reuse previous solutions then

swap into newer version of components). [15,76]

Furthermore, in order to meet the goals of DSSAs, software development relies on

the identification and deep understanding of a selected domain of applications. It also

requires a variety of support tools, including repository mechanisms, prototyping

facilities, and analysis tools, etc. [76] Accordingly, some important tools and their

functions are pointed out by Clark [15] as shown in Table Q. Similarly, some other less

important support tools may also be required such as requirement verification, language

processing and compiling, user interfaces, databases, distributed and real-time operating

systems, configuration management, and documentation tools.

Another key approach to meet the goals of DSSAs is through software reuse.

Software reuse is the use of existing software artifacts when building new software

systems in order to reduce the time and effort required, while also improving the quality.

It is possible to meet the goal through software reuse based on parameterization of

generic components and interconnection of components within a canonical solution

framework. A framework is provided by reference architecture in which we can configure

diverse software components and coordinate their activities.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Tool Type Functional Capability

Modeling - Identify domain terminology
- Describe the behavior of objects, attributes and

relationships in domain model
- Explicitly define the boundaries of the domain
- Provide some simulation or inferencing capability

Requirements Management - Describe new application’s objects, attributes and
relationships

- Make evaluation criteria and constraints explicit
- Capture rationale

Architecture Specification - Define reference architecture
- Prescribe (describe, constrain) components and

connectors, behaviors
- Explicitly show platform capabilities

Architecture Specialization
and Application Evolution

- Assist in iteration of application design and development
process

- Configure reference architecture to meet application’s
needs

- Specify and instantiate components
- Compose candidate configurations into an executable

form
- Assess and evaluate candidate configurations
- Capture rationale

Repository - Store and retrieve components

Component Selection - Assist in choosing from several alternatives

Component Generators - Transform specifications into executable code

Configuration, Load and
Exercise

- Assist in the integration and configuration of
components

Table II: Tool support for DSSA generation

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3

Model Foundations

The theory of Markov chains has been applied in modeling hardware and software

behaviors, and several Markov-based approaches [14,44,48] were developed for

measuring software reliability. The application of a Markov usage model can be seen in

the construction of IBM's DB2 [84] and in a number of tools listed in the survey of

software tools for evaluating reliability, availability, and serviceability [39].

3.1 Architecture-Based State Model

Our objectives are to model the reliability of large-scale software, support design

decision-making, and facilitate quality prediction at the early design stage. We found

Software Reliability Growth Models (SRGMs) to be unsuitable because of the needs of

test data, available only at the late stage of software life cycle. The alternative is to take

advantage of the white-box approach of discrete time Markov-based reliability models.

Although the models can support decision-making and facilitate early prediction, they are

insufficient to model complex structures and address execution history.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Therefore, we developed an architecture-based state model, allowing us to take into

account several issues at an early phase of the software process: complex system

structures, heterogeneous architectures, execution history, and software behaviors both

probabilistic and deterministic. Our architecture-based state model is based on discrete

time Markov models, whose properties are described in Appendix A. Our state model,

taking into account architectural styles and execution history, resolves the modeling

limitations of homogeneous Markov-based reliability models [14], discussed in Appendix

B. In Appendix C, one sample example of utilizing traditional approaches to compute

system reliability is depicted.

The fundamental difference between our state model and the traditional discrete

time Markov-based reliability models is that our state model allows multiple components

to aggregate into a state or a component to be executed in multiple states. Such a

definition facilitates the modeling of heterogeneous system structures, both probabilistic

and deterministic software behaviors, and execution history. Chapter 4 illustrates the

utilization of architectural styles to realize system structures, and Chapter 5 models

software behaviors and execution history. Basically, software is first studied to realize its

system structures through the identified architectural styles. The characteristics and

behaviors of these styles are then addressed into our state model and system reliability

can be calculated accordingly.

Given that a condition is an instance of a set of components waiting for execution

and a circumstance is an event that can activate the execution of a component, we define

our state model as below:

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ A state is a set of circumstances characterizing a system at a given condition.

■ A transition is a passage from one state to another and the transition probability is

the likelihood of the transition being triggered.

Definition 3.3.1: Given an event is an occurrence of activation to a component, we
define a state sj = (£?, O).

O: a set of m components {cy, c2‘, ..., cm' }, and

£*: a set of m events {ef | ef is to activate cf) , for I < j < m.

Definition 3.3.2: We denote our state model Sm by a 5-tuple (Q, S, .«i, sk, M).

Q : a finite set of Estates {51? s2, ..., s*}.

& a transition function mapping Q x E to Q.

E = {£* | E in s^ 1 < i< k] , where s, = (£*', C).

s the initial state to start the transition.

sk: the fina l state that terminates the transition to any states in Q.

M: a k x k transition matrix, constructed from those states in Q. Each entry M(i,j)

is the transition probability from state 5, to state Sj.

■ M(i,j) * 0, if S(sj, E) = Sj, 1 < i < k, and 1 < j < k.

• M(i, j) - 0, otherwise.

The major step of our architecture-based reliability model is to build the transition

matrix M, taking into account system structures and software behaviors. With this

transition matrix M, when a standardized stochastic matrix can be constructed, discussed

in Appendix A, then (/-Af)' ■' is nonsingular. Therefore, we can compute software

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(/ - A f) tl
reliability following the traditional approaches as R = (- l) —jvf| the formula

{B2} discussed in Appendix B. / is an identity matrix, |/-M| is the determinant of matrix

(/-Af), and |(/-M)*.i| is the determinant of the minor matrix, excluding the last row and the

first column of the matrix (/-M). In traditional models, Rk is the reliability of the

component executed in state sk. However, in our model Rk represents the overall

reliability of the component(s) executed in state sk, since multiple components can be

executed in the same state.

The following shows the construction of a standardized stochastic matrix T, with

each row sum equal to 1. Similar to the traditional Markov-based reliability models in

Appendix B, two absorbing states S and F are added to represent a successful state and a

failure state, respectively. The transition matrix M, with each row sum less or equal to 1,

is a k x k sub-matrix in the stochastic matrix T. All of the states in M are transient states.

Each state will eventually transit to either the successful state 5, or the failure state F after

a certain number of direct or indirect transitions. When the transition is eventually to the

successful state 5, the software succeeds. Otherwise, the software fails when the

transition is to the failure state F.

s F V h k
5 "1 0 0 "

0
;=i _

T= F 0 1 0
0

, b 2 = k

A f t M
l - l M (k - l J)

A .
;=i

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The matrices B\ and Bz are k x 1 matrices. In the transition matrix M, only the final

state St can directly transit to the successful output state S. Therefore, all the entries of B\

are equal to 0, except the last row entry Bi(k,l) is equal to /?*, the overall reliability of the

component(s) in state r*. Based on the definition of our state model S«, the last row sum

of M is equal to 0. Therefore, Bzik, 1) is equal to 1-fiiOM) and each entry BaOU), 1 ^ i <

k, is equal to 1 minus the ith row sum of Af.

In the modeling, if a component executed in the final state has a chance to invoke

other components in the other states, this original final state cannot ensure the termination

of the state transitions in M. In this situation, we construct a new final state to the M

matrix that only transits to states 5 and F, and link the original final state to the new final

state, based on the probability. This fulfills that the final state terminates the execution of

software, and all states in M are transient. In this new final state, we have a virtual

component always executed reliably so that there is no reliability difference to the

original model.

3.2 The Modeling of Multiple Initial States and Multiple

Final States

We have introduced the reliability modeling of software with one initial state and

one final state. Typically, a system can have multiple initial states and/or multiple final

states instead of only one initial state and only one final state. In this section, we present a

simple scenario to refine the problem of multiple initial states and multiple final states to

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

one single initial state and one single final state by introducing a super-initial state S1 and

a super-final state SF to the state diagram.

Suppose a system has a set of initial states / = {Si', SV Sp‘ } and a set of final

states F = { S /, S / , S /}. We add a directed edge (Sl, Sj) with transition probability

Pij, observed from the operational profile, for each j - 1 ,2 p. Similarly, we add a

directed edge (S/, SF) with a transition probability Pjf for each j = 1 ,2 q. Since S'
«7

and S are two added states, we assume that the components in these states are virtual

components with component reliabilities both assigned with 1 without affecting the

measurement of system reliability. Note that the final state SF only transits to either the

successful output state 5, or the failure state F in the stochastic matrix T to ensure that all

states in M are transient; i.e. the row sum of M is equal to 0. Figure 1 shows how a state

diagram with multiple initial states and final states in the dotted rectangular area can be

converted to a state diagram with only a single initial state and a single final state.

I F

Figure I: One super-initial state S ' and one super-final state S F

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4

Heterogeneous Software Reliability

Modeling and Component Sensitivity

Measurement

One of the objectives of our architecture-based software reliability model is to model the

reliability of large-scale software, taking into account the characteristics of complexity of

architectures. The architectures are commonly composed of a variety of components and

interfaces, which can form different configurations. Each configuration can have different

topologies and constraints. Therefore, the system structures can be heterogeneous. The

major concerns at the design phase of large-scale software are commonly the overall

system structures. Because the change of architectural designs at a later phase of the

software life cycle can be difficult and expensive, it is thus important to make a good

design decision in the early design phase, and software architecture serves as an

important attribute in our reliability model.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software architecture is commonly accepted as the composition of components,

connectors, and configurations [27]. Components define the locus o f computation.

Connectors define the interactions (e.g. procedure call, data flow, implicit triggering,

message passing, shared data, and instantiation [71]) between components.

Configurations define the topology and configuration constraints of the components and

connectors. The theme of our study is to evaluate the reliability of software based on its

architecture. Software architectural styles can characterize software systems that share

certain common properties, such as the structure of organizations, constraints, and high-

level semantics [25]. Therefore, architectural styles allow us to comprehend complex

system structures in a formal way for both homogeneous and heterogeneous

architectures.

An architectural style is a high level abstraction of repeatable design patterns that

designers can use to describe software systems and communicate with programmers. A

number of architectural styles have been identified and used to facilitate communications

and to improve the understanding of software systems [27,81]. For example, client-server

architecture means that the architecture of a software is based on the client-server style.

This idiom “client-server” implies that a system has client components and server

components. The connector between a client and a server is through a network. The

configurations regulate that a client can ask multiple servers for services, a server can

serve multiple clients, and a client can also be a server. Therefore, such a high-level

abstract term can simplify the detailed descriptions and facilitate communications among

designers and programmers.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.1 Reliability Modeling

Three attributes are required in our software reliability modeling. One is the system

architecture, another is the set of component reliabilities, and the other is the set of

transition probabilities for every two connecting components. The system architecture is

classified into architectural styles, in order to realize the different interactions and

intercommunications. The reliability of a component can be measured by traditional

approaches [45,49,58] or the inter-component dependency approach proposed by Hamlet

et al [32]. The transition probabilities are observed from the operational profile and are

independent of component reliabilities.

Here we show the modeling steps of our architecture-based software reliability

model. For a given software, we:

1. Identify the architectural styles in a system to understand the characteristics

and complexity of the system structures,

2. Construct a state model, encompassing all the identified styles, and

3. Use the state model to compute software reliability.

For the first modeling step, please reference [24,27,81] for the identification of

architectural styles in a system. In our reliability model, we utilize the identified

architectural styles to recognize the system structures, transform the architecture into a

state model, and then compute the system reliability accordingly. From Section 4.1.1 to

4.1.4, we use four architectural styles, batch-sequential, parallel/pipe-filter, call-and-

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

return, and fault tolerance styles, as examples, to demonstrate how to construct the state

model for each style. These four styles are commonly used with varying characteristics,

and other styles can be extended with certain modifications. In Section 4.1.5, we

construct a state model for heterogeneous software with the combination of these

discussed styles.

From our state model in Section 3.1, a state is a set of circumstances characterizing

a system at a given condition, and the transition probability is the probability of going

through a transition. In our state model, /?, represents the reliability of component c„ LtJ

represents the reliability of connector from component c, to component c;, and PtJ

represents the transition probability from component c, to its successor component Cj.

4.1.1 Batch-Sequential Style

In the batch-sequential style, components are executed in a sequential order and outputs

of a component are produced only after all its inputs are fully processed. In other words,

only a single component is executed in any instance of time. Upon the completion of the

execution, the control authority transfers from the executed component to one (and only

one) of its successors. The selection of the succeeding component can be probabilistic (if

more than one successors) or deterministic (if only one successor).

The state model of batch sequential style software can be modeled as follows: Since

the execution of the current component must be fully completed before the next

component can proceed, only one component is executed at a time. The transformation

from the architecture to a state model can be viewed as a mapping of a single component

to a state, which represents an execution of the component. A transition from one state to

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

another takes place after a component is activated by an event, and the control authority

is also transferred.

An instance of this style can be modeled as shown in Figure 2(a), where c \ ,c 2, ... ,

Ck are software components and a branching component, such as C2, can only transfer

control to one of its subsequent components. With s, = (£*, C) and state model Sm defined

in Section 3.1, this batch-sequential style software has states si = ({ei1}, {cj}), ^2 = ({^i21 *

{c*2}), and Sk= ([e f] , {c*}), and state transitions <J(.si, { e f}) = s2, S (s2, {ci3}) = .S3, S

(s2, {e(4}) = 54 and S (s*.|, [e f)) = 5*. When the transition reaches another state s„

event e f is to activate component c„ I < i < k. We construct the state model SM = (Q, S,

si, Sk, A/), where Q = {si, s2, s ^ . Figure 2(b) is the state diagram of this instance of

the batch-sequential style, where s\, s2 5* are the mapping states to components c 1,

Ci, ... , ck.

(a) Architecture

(b) State Model

_ i2>

Figure 2: Batch-sequential style

From the state diagram in Figure 2(b), a k x it matrix M can be constructed as

below, which is similar to traditional homogeneous Markov-based reliability models in

Appendix B. The transition probability from one state s, to another state Sj is equal to

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

RiLjjPij, which is the product of the component reliability /?, of component c, in state s„

the connector reliability from component c, to Cj, and the transition probability P,, from

component c, to Cj.

M (i , j) = R lLIJPIJ, S (s „ E J) = s J
1 1 1 , f o r l < / < k , \ < j < k ..{1}

M (/. j) = 0 , otherwise

4.1.2 Parallel/Pipe-Filter Style

In a concurrent execution environment, components commonly run simultaneously to

improve system performance. The parallel or pipe-filter styles are used to model this type

of systems. In these styles, a set of components cooperates and works concurrently to

fulfill a task. Each component works on a partition or a subtask. The main difference

between these two styles is that parallel computation is generally in a multi-processor

environment, whereas pipe-filter style occurs commonly in a single processor, multi

process environment.

The state model of parailel/pipe-filter style software can be modeled as follows: If

only one single component is running at a given condition, a state represents an execution

of the component. Otherwise, we model the scenario of the set of concurrent components

by a state spanning the time from the beginning to the completion of the executions of

these concurrent components. A transition from one state to another takes place after a set

of components is activated, and the control authority is transferred. The transformation

from the architecture to the state model can be viewed as a mapping of a single

component to a state, or multiple concurrent components to a state.

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(a) Architecture

(b) State Model Si

Figure 3: Parallel or pipe-filter style

An instance of this parallel/pipe-filter style can be modeled as shown in Figure

3(a), in which the dotted circles are components ci to c*.| running in parallel. Each

parallel component works on a portion of the outcome coming from component c\ and

then transfers the execution to the next common subsequent component c* in

synchronization with other parallel components. With Si - (£*, C) and state model Sm

defined in Section 3.1, this parallel style software has three states s\ = ({^i1}, {c'i}), s2 =

({ei2, ei2 {c2, c3 ct.|}), and s3 = ({ei3}, {c*}), and two possible state

transitions S (st, {^i2, e 2, ..., e*-22}) = si, and S (si, {e | J }) = s3. When the transition

reaches states s\ or 53, events e ' and e\ are to activate components ci, and c*,

respectively. When the transition reaches state si, events e 2, e z , ..., ek-z are to activate

components ci, c3, ..., Ck.\- We construct Sm = (Q , S, s t, 53, M), where Q = {si, s2, 53}.

Figure 3(b) is the state diagram of this instance of the parallel/pipe-filter architectural

style. The execution of component c\ is one single component running, so is component

c^ They are mapped to their individual states si and s3. The executions of components c2

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

to ct-1 are congregated into state representing multiple components running

concurrently.

From the state diagram in Figure 3(b), a 3 x 3 matrix M can be constructed as

below. Based on the characteristics of parallel/pipe-filter style, the transition probabilities

from component c\ to components cz, C3, and c*.|, are all equal to P i2. Likewise, the

transition probabilities from components C2, C3,, and q .i to component c* are all equal

to Pzt. The entry M(1,2) is the transition probability from state si to sz equal to

I't-1 \ (t-i \
I! Lw P 12. in which n Lw I means that the connectors from component ci to all the

V

components C2, C3 and c*. 1 need to be reliable. Entry A/(2,3) means that all the

components from cz to c*. 1 in state ^2 perform successfully and finally reach state 5 3 .

(t - 1 \
Therefore, the value of M(2,3) is equal to fl Pn , which is the product of all the

k '=2) '

components operating reliably in this state, the connector reliabilities from components

C2, C3 and c*.i to component c*. and the transition probability from components C2 to

Ck-

A/(l,2) = ^ (i1,{e1: ,ej,...,e;.: }) = 2f;

M (2,3)= ^ n /? (L,i jp i l ,J (52,{el3}) = 53 , for 1 < 1 < 3, 1 < j < 3 {2}

M (i,j) = Q, otherwise

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.1.3 Fault Tolerant Style

Fault-tolerant architectural style software consists of a set of components compensating

for the failure of the primary component. When the primary component fails, the first

backup component will take over the responsibility and become the new primary

component. If this new one fails as well, another backup component will take over. The

implementation of these fault-tolerant components may involve using different

algorithms and data structures to improve the system reliability. Therefore, the reliability

of components in the same fault-tolerant set can be different from each other. In this

style, components that compensate for the failure of each other are aggregated into a

state.

The state model for fault tolerant style software can be modeled as follows: If only

one single component is running, a state represents an execution of a component.

Otherwise, we model the scenario of fault tolerant components by a state spanning the

time from the beginning of the primary component to the completion of the activated

fault tolerant components. A transition from one state to another takes place after

finishing and stopping the activation of a set of components, and the control authority is

transferred. The transformation from the architecture to a state model can be viewed as a

mapping of a single component to a state, or multiple fault tolerant components to a state.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(a) Architecture

(b) State Model

Figure 4: Fault tolerance style

Here, we discuss one type of scenario where software fails only when ail the fault

tolerant components fail. Given an instance of this architectural style as displayed in

Figure 4(a), those dotted components from C3 to cm are modeled as backup components

to the primary component ci. Inside the dotted rectangle shown in Figure 4(b), these

components are congregated into the state si to represent multiple components running as

fault tolerance. With s, = (£*, C) and state model Sm defined in Section 3.1, this fault

tolerant style software consists of three states si = ({e?i1}, { n }), 52 = ({ci2. e i e*-22}.

{C2, C3 Ck-\}), and s3 = ({ci3}, {c*}), and two possible state transitions S(s\, [eiZ, e z ,

..., e*-22}) = S2> and S(sz, {ei3}) = 53. When the transition reaches state s\ or S3, events e\

and e\ are to activate components c\, and c*, respectively. When the transition reaches

state S2. events e\ is to activate component C2. If component C2 fails, event ez is then to

activate component C 3 . These phenomena will continue until the components in state sj

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

all fail. We construct Sm = (Q, S, j |, S3, A/), where Q - {si, S2, 53}. Figure 4(b) is the state

diagram for this instance of the fault tolerant style. The execution of component c\ is one

single component running, so is component c*. They are mapped to their individual states

51 and 53. The executions of components C2 to c*. 1 are congregated into state si

representing multiple components running as fault tolerance.

From the state diagram in Figure 4(b), a 3 x 3 matrix M can be constructed as

below. The characteristics of the fault tolerant style are similar to the parallel style, where

the transition probabilities from component c\ to components C2, C3 and c*. 1, are all

equal to P 12. Likewise, the transition probabilities from components C 2 , C 3 , and c*.| to

Ck are all equal to Pt*. For a set of fault tolerant components, they first receive control and

then wait for activation. Therefore, the connectors to the set of fault tolerant components

from state s (to state s2 are executed. Thus, is equal to fl/f *n Lu JPn- The value

reliability of the set of fault tolerant components and their subsequent matching

connectors, based on the removal of the possibility that not a single fault tolerant

component and its subsequent matching connector succeed.

is the overall

v

M (1, j) = 0 , otherwise

{3}

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.1.4 Call-and-Return Style

In a call-and-retum style, a caller component can request services provided by the callee

components. Before the services are fulfilled by the callee components, the control

remains on the caller component. After that, the caller component resumes the execution

from where it left, and transits to the next subsequent component. Therefore, the callee

components may be executed many times with only one time execution of the caller

component.

The state model for call-and-retum style software can be modeled as follows: A

state represents an execution of a component. A transition from one state to another takes

place after a component is activated by an event and the control authority is also

transferred, or when the execution temporarily transfers to its callee component. The

transformation from the architecture to the state model can be viewed as a mapping of a

component to a state.

An instance of this call-and-retum style can be modeled as shown in Figure 5(a).

Component c\ is a caller component, and its callee is component c2. A one time execution

of ci can invoke c2 many times before component C | finally transits to component C 3 .

With Si = (£*, C) and state model Sm defined in Section 3.1, this call-and-retum style

software has three states s\ = ({e /} , {ci}), s2 = ({<?i2}, {c2}), and 5 3 = ({<?i3}, { C 3 }) , and

three possible state transitions £ (si, {ci2}) = s2, S(si, {ei1}) = si, and £ (s (, {^i3}) = s3.

This represents that ci can call c2 many times before c\ transits to C 3 . When the transition

reaches state s„ event e\ is to activate component c„ 1 < 1 < 3. From the above derived

states and possible transitions, we have Sm = (Q, $, s 1, S 3 , M), where Q = {st, s2, S3}.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5(b) is the state diagram of this instance of the call-and-retum architectural style.

The execution of component c\ is one single component running at a given condition, so

is component c? and cj. Therefore, they are one-to-one mapped to their individual states

ji, s 2 and £3.

(a) Architecture

(b) State Model

Figure 5: Call«and-return style

For the state diagram in Figure 5(b), a 3 x 3 matrix M can be constructed as below.

The entry M(1,3) is equal to R\L\jPm, which is the product of the reliability of caller ci,

the connector reliability from c\ to C3, and the transition probability from c\ to C3.

Likewise, the entry A/(2, l) can be computed as R2 L2 1 P2 1 , which is the product of the

reliability of callee C2, the connector reliability from C2 to ci, and the transition probability

from C2 to c\. The critical entry is M (l,2), which is equal to L12P 12 instead of R\L\rP\2 -

This entry considers only the connector reliability and the transition probability from c 1

to C2 without considering the reliability of the caller ci. That is because component c\ is

only executed once before transiting to component C 3 , regardless of how many times

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

component c2 is executed. Therefore, the entry A/(l,2) will not consider the reliability of

caller c\, but the component reliability of this one time execution of c\ will be considered

in the entry Af(l,3) when state 5i transits to state 53.

A/(l,2) = Li2 Pl2, £ (-V k i2}) = ^2>ci isaca lle rin s,
M (2 ,1) = , 6 (s ^ [e l)) = sx

‘ 1 , for 1 < / < 3, 1 <7 < 3 {4}
M (l,3) = /?1Ll3PI3, <y (jIf{e,, }) = 53 '
M (/', j) = 0 , otherwise

4.1.5 Heterogeneous Architecture Modeling

Our state model takes into account system structures and is applicable to model the

combinations of different architectural styles. In this section, we formalize the

construction of the transition matrix M for the reliability modeling of heterogeneous

software with the aforementioned four types of architectural styles. When a system has

more styles involved, this transition matrix can be further extended. Take the styles listed

in Section 2.2.4 for example. Client-server architecture and the method invocation of

object-oriented software are similar to call-and-retum style. However, the connector

reliabilities may vary, especially when network transmissions are involved. Besides, the

uncertainties in the implicit invocation or event-driven styles can be modeled similar to

the branching characteristics in the batch-sequential style, using probabilities to address

uncertainties.

Assume that total x components are in software system G. After the architecture-to-

state transformation, we obtain a state set £ which consists of n states transformed from

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

batch-sequential, parallel/pipe-filter, fault-tolerant, or/and client-server styles. Thus, we

have

G = {cr | component cr 6 B u P u F u S u C , 1 < r<jc}

B: set of components in batch sequential style.

P: set of components in parallel style.

F: set of components in fault-tolerant style.

5: set of callee components in call-and-retum style.

C: set of caller components in call-and-retum style.

4 t u & = {SN*2, \$ = n.

, where

4b - {•*, | c Tuses state s,, cze B), states for batch sequential components

4p - {s, | Pj uses states„ P jd P , I < j< u }, states for u parallel component sets

4f - {-Si | Fj uses state s„ Fj c F, 1 < j < v}, states for v fault tolerant component sets

4c — {Si | c T uses state s„ cre C}, states for caller components

4 s — {-S/| c Tuses state cr e S }, states for callee components

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The transition matrix developed from the state view is described as follows. Let s„

Sj g £. We define the n x n transition matrix M, which labels all the states on the row and

the column, and entry M (i,j) can be computed based on the following criteria:

M(i , j) =

0 if S (s t , E J) = 5,
R tLv Pu if S, € U %F and s] € g s

) P(a+1)' if S‘ € ^ and C“+1 10 are in 5‘
((I r , for 1 <

1 - n - R kLk]) P(b+l)J if s, g 4 f and c b+1 to c 6m are in 5,
I l*=6+1 JJ

L,k if G 4 P and c c+1 to c r„ are in s ,

LtlPlt if s, g # c ,and Sj e 4 S

<n, 1 < j < n, where | Ĵ = n ...{5}

In our model, the state model is utilized to compute software reliability. As

discussed in the model foundation in Chapter m , our stochastic transition matrix T is

standardized. Therefore, once the transition matrix M is available, software reliability can

1(7 -A /)nl|
be computed as R = (- l) R„ —:------- r-5-, where n is the total number of states

/

transformed from the original x components.

4.1.6 An Example

Figure 6(a) is the directed graph of an architecture view with fifteen components, where

ci is the input component and cis is the output component. Components a and c.» are

running in parallel. Component cio is a fault tolerant component of eg. Components cu,

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

eg, and cs are running as call-and-retum style, where eg and cs are the callee components

of caller components cn and eg, respectively. The others are running in sequential

manner.

Figure 6 : A rchitecture view with IS components vs. state d iagram with 13 states

The reliability R, of each component c, is shown below:

R i= 0.998 R2 = 0.990 fl3 = 0.980 ft, = 0.995 Rs = 0.999

Rf, = 0.985 R-; = 0.996 R» = 0.975 R9 = 0.990 fl ,0 = 0.998

R n =0.950 /?,2 = 0.965 fl,3 = 0.970 R H = 0.980 R IS = 0.992

The reliabilities of connector are equal to I except the follows:

U .i = 0.99 Li ,.g = 0.99 Lg.5 = 0.98

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The reaching probabilities Py between the components c, and c7 are as follows:

P \ , 2 = 0.40 Pi 3 = Pi 4 = 0.60 P2,6 = P3 7 = P4.7 = P5.8 = 1 0

P6,9 = P6.10 = 0.90 P7 H =0.25 P7.9 = P7.10 = 0.75

P8,i 1= 0.80 P9.12= P10.12 = 0.70 P9,i3 = P10.13 = 0.30

P6.7 = 0.10

P8.s= 0.20

P11.1 = 0.15 Pi 1.8 = 0.20

P 12.2 = P i2,i3 = 0.50 P13.14 = 0.40

P. U3 = 0.50

P l3,15 = 0.60

P ii.u = 0.15

Pu..5= 1 .00

The transformed state view is shown in Figure 6 (b), where a circle represents a

state, a dotted oval represents a state for parallel components running concurrently, a

dotted rectangle represents a state for fault-tolerant components, an arrow represents the

transition from one state to another state, and a double arrow represents the call-and-

retum style.

With the definitions of s, = (£*, C) and Sm, this heterogeneous style software has

the following thirteen states. In general, a state is enumerated with a number as its index,

but component c, is not definitely mapped to state s,. Note that state s3 is a state for a set

of two parallel components C3 and C4, and state sg is a state for a set of two fault tolerant

components c9 and ciq.

s i = ({ e i ‘ }, { c i }) S 2 - { c 2 }) S3 = ({ e i 3, e 23 }, { c 3, c 4 })

*4 = ({ e i 4 }, { c 5 }) S5 = ({ e i 5 }, { c 6 }) 5 6 = ({ e , 6 } , { c 7 })

*7 = ({ e i 7 }, { c 8 }) •y8 = ({ ^ i 8, e 2 8 }, {c 9, c i 0 }) S9 = ({ e t9 }, { c n })

•S|0 = ({ < ? l 10K {C[2 }) •Sn = ({ e i n l . {C13}) •S i2 = ({ e , 12}, { c , 4 })

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

si3 = ({e«13},{c15})

From the above states, the following shows 22 possible transitions between two

states out of those 13 states:

5 |, U i2}) = 52 #5i, {ei3, e23}) = 53 #•52, {<?i5}) = 55

#*3, {^l6}) = S6 #54, {ei7}) = 57 #*5, = J?6

#•55, {^|8, e 2 8}) = s% #56, {*M8, ^28}) = -s’s #•56, {^l9}) -S9

57, {e,4}) = 54 #•57, {«?t9}) = 59 #5g, {̂ 110}) = 5l0

#5 8, #59, |« l '}) = *! #59, {̂ 17 }) = 57

<5“II*T2 #59, {e*i' “}) = 512 #•510, {ei2}) = 52

A © II % nII
ri

#•*11, {^l13}) = *513

5 j2, {^113 }) = -*13

Based on the definitions of our state model in Section 3.1, we have Sm = (Q, S, s /,

sk, Af), where

Q {51, 52, 53, 5̂* $7, *58* 5|0, 5j2, *513 },

the initial state is 5i,

the final state is 513, and

the transition matrix Af from {5} is computed as follows:

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5I J2 *3 *4 *5 *6 *7 *9 •*10 •*11 •*12
•*. 0 .3992 .5988 0 0 0 0 0 0 0 0 0
52 0 0 C 0 .99 0 0 0 0 0 0 0
*3 0 0 0 0 0 .9751 0 0 0 0 0 0
*4 0 0 0 0 0 0 .999 0 0 0 0 0
*5 0 0 0 0 0 .097515 0 .8865 0 0 0 0
*6 0 0 0 0 0 0 0 .747 .249 0 0 0
*7 0 0 0 .196 0 0 0 0 .78 0 0 0
*8 0 0 0 0 0 0 0 0 0 .699986 .299994 0
J, .1425 0 0 0 0 0 .198 0 0 0 .475 .1425
s to 0 .4825 0 0 0 0 0 0 0 0 .4825 0
51! 0 0 0 0 0 0 0 0 0 0 0 .388
■*12 0 0 0 0 0 0 0 0 0 0 0 0
S13 0 0 0 0 0 0 0 0 0 0 0 0

M(l,2) = RiLiaPij. = 0.998 x 1.0 x 0.4 = 0.3992

M(1,3) = /?iL,.3̂ ,.4/ >i.3 = 0.998 x 1.0 x 1.0 x 0.6 = 0.5988

M(2,5) = R2 L2 .6 P 2 . 6 = 0.99 x 1.0 x 1.0 = 0.99

A/(3,6) = R ^ j RaU .iPxi = 0.98 x 1.0 x 0.995 x 1.0 x 1.0 = 0.9751

M(4,7) = R5L5 .bPs.s - 0.999 x 1.0 x 1.0 = 0.999

M(5,6) = R eU jP ej = 0.985 x 0.99 x 0.1 = 0.097515

Af(5,8) = R6 U .9 U . 10P6 . 9 = 0.985 x 1.0 x 1.0 x 0.9 = 0.8865

Af(6 ,8) = RriL~i<)Lfi_ 1 qP7_9 = 0.996 x 1.0 x 1.0 x 0.75 = 0.747

Af(6,9) = R7 L1 MP7M = 0.996 x 1.0 x 0.25 = 0.249

Af(7,4) = LssPgs = 0.98 x 0.2 = 0.196

59

*13
0
0
0
0
0
0
0
0
0
0

.582
.98
0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

M{1 ,9) = R%L%mP%m = 0.975 x 1.0 x 0.8 = 0.78

Af(8,10) = (1 - (1 - /? 9 L 9 112)(1-/?10^10.12))^>9.12

= (l-(1-0.99 x 1.0)(1-0.998 x 1.0)) x 0.7 = 0.699986

Af(8,l 1) = (l-(l-/?9^9,13)(l-/?IO^lO.I3))/>9.13

= (l-(l-0.99 x 1.0X1-0.998 x 1.0)) x 0.3 = 0.299994

Af(9,l) = /fiiLii.iPii.i = 0.95 x 1.0x0.15=0.1425

M(9,l) = L \ksPu.s = 0.99 x 0.2 = 0.198

M{9,11) = Ri ,L ,u 3Pii.n = 0.95 x 1.0 x 0.5 = 0.475

A/(9,12) = R {,L, 1.4P, i.4 = 0.95 x 1.0 x 0.15 = 0.1425

A/(10,2) = R12L 12.2P 12.Z = 0.965 x 1.0 x 0.5 = 0.4825

M(10,l 1) = /?i2^ ,2.13 *̂12,13 = 0.965 x 1.0 x 0.5 = 0.4825

MU 1,12) = P 13/-13.14P 13.U = 0.97 x 1.0 x 0.4 = 0.388

Mil 1,13) = /fis^n.isPn.is = 0.97 x 1.0 x 0.6 = 0.582

A/(12,13) = f lu I 14.15P 14.15 = 0.98 x 1.0 x 1.0 = 0.98

n = 13 , |(/-M)„.,| = 0.3788, \I-M\ =0.4285, P I5 = 0.992

System reliability R = (- l)"+l RIS ^-j------------= 0.8769
|/ — M\

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 Component Sensitivity Modeling

Component sensitivity modeling is to measure the impact of the reliability of a

component on the overall system reliability. The component sensitivity measure is the

differentiated value of software reliability with the component reliability. The objective

of this study is to demonstrate that improving a critical component in a system can have a

more significant impact to the overall system reliability than the other components, even

though they all have the same component reliability. In general, a component that has

more interactions or interrelationships with the other components is most likely to be a

critical component. The architecture-based component sensitivity model allows us to

compute the sensitivities of components in heterogeneous software architecture,

composed of various component interactions and system structures.

In this section, we focus only on software that follows Markov properties without

considering connector reliabilities. Therefore, the transition matrix M from {5} can be

simplified as below. We have M(iJ) =

if S (s t , E J) * Sj
if s , « ^ U 4f and s, € £s, r,; = Pt]

if 5, G £ p and c a+1 to c a, p are in j,,r„ = Pla. Uj

if 5, e 4 f and c b^ to cb+q are in s , S 9 = P(b+Ul

if s 1 g £ p [J 4 f and c c>1 to c r. r are in S j S tJ = Plle. u
if s t G , and 5 ■ G £ s , r ,; — Pt/

, for 1 < i < n, 1 <j <n , where = n.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

After the above architecture-based transition matrix M is available, the component

sensitivity model can be utilized to measure the sensitivity of each individual component

through the following two phases. The first phase is to compute the sensitivity of each

state. The second step is to compute the sensitivity of each component, due to a state may

have multiple components working simultaneously or compensating the failure of each

other.

Phase I, compute the sensitivity Si for each state s^

Based on Sections 4.2 and 4.3, let W - (/ - M) and E - (/ - M)n.\. We use cfy to represent

the cofactor of W(i,j) and f t , to represent the cofactor of E(i,j). In addition, two functions

row(i) and column(j) return the mapping state s, and the mapped state sj of W(i,j).

For row(i) g £, 1 < / < n

\W\ = (0 i, + 0 »,) + (ft, + 05,)/?„ for i = 1 n-1 ...{6 }

0 i, = an,

On - - r./oj,,

n

05, = - £ r ijCKij, for columnij) € 4 s
i * j . j = i

n
04, = - £ r,yQij, for columnij) e 4 s

i

, where 0 i„ 0 ,„ (hi, and 04, are not functions of /?,

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

|£| = (Oil + Oki) + (0 2 , + 0 3 ,)/?,, for / = 1n- 1 {7}

f 0 for i = 1

^ ‘ • k - u for 1 < i < /i - 1

| 0 for / = 1

[- T A n fo ri < / < « - !

03/ = - S A(y-l) ’ f°r column(j) <Z <*s
<•!■]=-

04, = - i ry , , for column(j) e &

, where Oi„ oi„ 03, and 04, are not functions of /?,.

From {B2} in Appendix B, R = (- l ^ ' / t n ^ 1' * ~I~<T3' , for i = 1, n-l

S, , j g . = (- I T - R„ ^ + ' • X»» » > >(g " + *'■ >, for ■■ = | 8 ,
a«, «#„ + 0 *) + <»!,+«»>*,)•

s 3g (n..i <gi. + g4,) + + «i)*! I9|
" d«„ ..

Phase 2, compute the sensitivity for each component:

Case 1: fo r components in batch-sequential and call-and-retum styles.

In batch-sequential and client-server styles, only one component is executing in a

state; thus the sensitivity obtained of this state is the sensitivity of the component.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Case 2: fo r components in parallel/pipe-filter styles.

Assume that there are k parallel components C - {ci, cz, ..., c*} in state s, and each

component q in C has component reliability R,. From phase 1, we obtained that the

sensitivity for state s, is 5,. Consequently, the sensitivity of parallel component a in C is

equal to S, which is described as follows:

R = (- i r iRn

(0 |. + 4̂,) + (̂ 2, + 3̂,)

s - dR-r ir'p ^ +<̂ ,)K +g4.)
f' dR,

(k } r k ^
n Rj = n R j 5

^ 7 = L 7 W J [,7 = 1 .7 * / J
{ 10}

Case 3: fo r components in fault-tolerant styles.

Assume that there are k fault-tolerant components C = {ci, ci, ..., c*} in state s, and

each component c; in C has component reliability R,. From phase 1, we obtained that the

sensitivity for state 5, is 5,. The sensitivity of fault-tolerant component q in C is equal to

S, illustrated as follows:

(* i . + 0 - 4 ,) + (f f : , + ^ , { l - n (l - / f ;)
/e = (-1 r 1 Rn----------------------------- j — lf -------- ;

(01I+ 04i)+ (0 2i+ 0 ,<n - n a - K J)

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2.1 An Example

We use the same example in Section 4.1.4 to calculate the sensitivity of each component.

Phase I , compute the sensitivity Si fo r each state s,;

From the state model, we obtain that:

4b {S|, S 2 , S 5 , S t , S 9 , S10, S11, 5 | 2, ^ 13}

4? { S i }

4 f { S i }

4c { s 9 , s 7 }

4s { s 7 , s 4 }

Note that the component in state 57 can be a caller as well as be a callee. In addition, the

component in state 59 is not only a component in batch-sequential style, but also a

component as a caller. By {8 } and {9}, the sensitivity of each state is shown:

States Sensitivity States Sensitivity

S l 0.9063 0.7403

S i 0.5548 s 4 0.0092

S 5 0.7441 •56 0.6162

S i 0.0376 S% 1.1227
s 9 0.1593 S \ 0 0.7962

S n 0.8752 S l 2 0.3721

S \ i 0.8852

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Phase 2: compute the sensitivity of each component:

Case 1: fo r components in batch-sequential and call-and-retum styles.

Components c i , ci, c$, C7, c u , C12, C13, c u and c i s are in batch-sequential style and

components C5, c 8 and c u are in the client-server style. Here, component c u belongs to

both batch-sequential and client-server styles. Since these components are one-to-one

mapping to a state, the state sensitivities are thus the component sensitivities.

Case 2: fo r parallel components C3 and C4.

Components C3 and C4 are executing in parallel. From {10}, the sensitivity for

component C3 is S3 x /f4 = 0.5548 x 0.995 = 0.5520, and the sensitivity for component c 4

is s3 x /?3 = 0.5548 x 0.98 = 0.5437.

Case 3: fo r fault-tolerant components C9 and cio-

Components c9 and c io are performing as fault-tolerant components in state sg.

From {11}, the sensitivity for component c9 is sg x (1 - tf10) = 1.1227 x 0.002 = 0.00224.

Similarly, the sensitivity for component cio is s8 x (1 - R9) = 1.1227 x 0.01 = 0.011227.

Let a > Cj mean that component c , should be improved before cy. The reliability

improving sequence is shown as

C i > C 1 5 > C 1 3 > C 1 2 > C 6 > C 2 > C 7 > C 3 > C 4 > C u > C i i > C g > C i o > C 5 > C 9

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Although the reliabilities of components c t and cio are identical, the sensitivity

results show that system reliability improvement by component c\ is about 81 times than

that by c 10. Thus, sensitivity analysis provides an admirable cost effective solution.

4.2.2 Discussion

The example of architecture-based sensitivity modeling in Section 4.2.1 depicts the

reliability impact of each component on the overall system reliability. Therefore, the

modeling is a cost effective solution to assist in allocating resources and effort.

However, the sensitivity modeling relies on the differentiation to be carried out.

Unfortunately, it is not always possible, especially when system structures are rather

complex, and connector reliabilities are also taken into account. In the next chapter, we

will introduce the modeling of system behaviors and execution history. The result is that

a component can use multiple states, which makes the previous formal sensitivity

modeling infeasible. Therefore, we will discuss an informal approach to support the

reliability impact of each component on overall system reliability, in order to suggest the

improvement sequence for software components.

From Sections 4.1.1 to 4.1.5, we know that once the transition matrix M is

constructed, we can utilize formula {B2} from Appendix B to compute software

reliability. As we know, the reliability of a component ranges from 0 to 1. As long as the

reliability of a component is less than 1, there is a chance to further improve its

reliability. Therefore, an informal approach can be practiced as follows:

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1. From a set of components C, choose C* = {c, | for each c, e C, component

reliability /?, < 1}.

2. Decide a small real number Ar, 0 < Ar < 1, so that for each element c, in C , (/?, +

A r)< 1.

3. For each element c„ increase its component reliability from R, to /?,-t-Ar, modify

the related entries of transition matrix M, and compute new system reliability

from R to R,'. Therefore, (Rf-R) is the increment of system reliability by

improving the reliability of component c* with Ar.

4. Sort the values of system reliability increment (/?,' - R) for each component c, in a

decreasing order. Therefore, this sequence prioritizes the component improvement

order. After improving the software, we yield a new system reliability R.

5. Assign C = C \ and continue the first step, if system reliability is still below

expectations.

4.3 Experiments and a Case Study

Our architecture-based reliability model takes system structures into account based on the

architectural-style point of view. Several simulations were conducted with random

generated architectures to validate the modeling of one single style as well as

heterogeneous styles. In addition, we conducted a case study to investigate the feasibility

and limitations of this architecture-based reliability model on a real system.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.3.1 Experiments

For the simulations, a number of architectures were randomly generated with the

reliabilities of components and connectors assigned a random value within a specified

range. The transition probability is assigned 1 for components that have only one

immediate subsequent component. Otherwise, the transition probabilities are randomly

generated with the sum equal to I for each component that has branches to multiple

immediate subsequent components. These generated architectures encompassed software

with only one single style or a heterogeneous style, based on the styles discussed in

Section 4.1. We would like to confirm that different architecture compositions could still

match with our model results. Furthermore, we wanted to observe whether the total

number of components and different reliability levels of the components have effects on

the correctness of our model.

To obtain the reliability measure of the simulation result, we store the number of

correct executions out of the total number of executions. The value is converged when

the standard deviation is lower than 0.001 with 95% confidence interval. The final

simulation result is the average of 1000 converged values. The following table

demonstrates the difference between the simulation results and our model results for

styles with different numbers of components 15, 30, 50, and 100.

Call-and-
Retum

Fault-
Tolerance Parallel Batch-

Sequential Heterogeneous

Simulation - 15 0.891871 0.889854 0.876161 0.889705 0.8780822
Model - 15 0.891987 0.889890 0.876141 0.889913 0.878139
Difference -0.000116 -0.000036 0.000020 -0.000208 -0.000057

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Simulation - 30 0.963351 0.961882 0.960466 0.961898 0.9626

Model - 30 0.963635 0.961885 0.960477 0.961889 0.962687
Difference -0.000284 -0.000003 -0.000011 0.000009 -0.000087
Simulation - 30 0.904549 0.898786 0.896218 0.898943 0.902644
Model - 50 0.906981 0.901081 0.897095 0.899833 0.902773
Difference -0.002432 -0.002295 -0.000877 -0.000890 -0.000129
Simulation -100 0.762556 0.760153 0.740725 0.760641 0.74249
Model - 100 0.764552 0.760144 0.740383 0.760421 0.744197
Difference -0.001996 0.000009 0.000342 0.000220 -0.001707

Table III: Simulations as validation to our model results

In addition to those randomly generated architectures, a subsystem of an industrial

stock system, which evaluates the trend of the stock market and generates evaluation

reports, was studied. This subsystem is composed of 23 components with four

architectural styles. Five components operate as server components, providing utility and

computing functions. Three components act as fault tolerance, responding to the

requesting data. Two components function concurrently to align data output to the screen

and to generate hard copies. This realized structure is then simulated to compare the

result with our architecture-based reliability model. The result of this stock subsystem is

shown on the last column, contrasting to those randomly generated heterogeneous

architectures in the previous table.

Heterogeneous 15 30 50 100 Stock

Simulation 0.8780822 0.9626 0.902644 0.74249 0.740419
Model 0.878139 0.962687 0.902773 0.744197 0.732226

Difference -0.000057 -0.000087 -0.000129 -0.001707 0.008193

Table IV: Validation results for a stock system and heterogeneous architectures

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Comparing the simulation with our model results, we observed that there is no

significant difference for each specific style or for the increment on the total number of

components. In addition, the results also match pretty well with high reliability software

as well as low reliability software. The biggest difference is 0.008193 and the smallest

difference is 0.000009. From statistical analysis, our model results achieve a 99%

confidence interval to the simulation results.

4.3.2 A Case Study

This empirical study was conducted on an industrial real time component-based system,

which has been used by more than 100 companies and 4000 individual users over the past

two years. This system provides a set of statistical models to help traders and fund

managers analyze the stock market’s historical data and catch the future movement.

The system is composed of several sub-units including a data unit, business rule

unit, utility unit, and presentation unit. These units serve as the mathematical libraries and

were implemented using C and C++. In this study, we focused on the data unit, which

contains 54 classes, 13,846 lines of code, and 921 functions. It has a total of 15

components embedded with three architectural styles, batch-sequential, parallel, and call-

and-return. The database components run concurrently with the evaluation components

so that modeling and data retrieval can operate simultaneously. Two components,

Calculator and Matrix, serve as server components to provide complex mathematics

calculations for the client components. The other components run in the sequential

manner, with looping and branching conditions.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

To measure the system reliability, we used the test pool of the system provided by

the Quality Assurance team and ran 13,596 test inputs. Among these, we observed 121

failures and obtained system reliability of 0.9911.

To apply our model, the transition probabilities between components were collected

from those 13,596 test inputs. For the transition probability between two components c,

and Cj, the value is calculated as the number of transitions from c, to c, over the total

number of transitions from c, to all its succeeding components. To measure the

component reliability, for each component we use data recorded by the QA team during

unit testing and compute the number of successful executions without crash over the total

number of executions. The number of testing inputs for each component can be different

depending on the component complexity. We constructed the state model of the system

using the methodologies described in 4.1.1 to 4.1.5 and then utilized a Markov model to

compute the system reliability using formula {B2} from Appendix B.

The system reliability computed from the model is 0.994001. We notice that the

difference is approximately 0.003 between the reliability observed and the reliability

computed from the model. The difference is caused by the probabilistic characteristics of

the Markov model, without taking into account the deterministic behaviors such as

component c, always first calls or transits to cj and then calls or transits to q . T o tackle

this situation, more efforts are required to refine the state model, which will be discussed

in the next chapter.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5

Deterministic Software Behaviors and

Execution History Modeling

A number of Markov-based reliability models [14,21,31,48] have been proposed for

measuring software reliability. Although Markov-based modeling does not depend on test

data and can accommodate software changes, these reliability models are subject to an

assumption that the control transfers among software components follow a Markov

process. This implies that the next component to be executed will depend

probabilistically on the present component alone and is independent of execution history.

Therefore, it is often argued that many types of software do not fully satisfy the Markov

properties, thus limiting the applicability of the Markov-based models.

Our approach aims at broadening the application domain of traditional Markov-

based reliability models by developing state models that preserve the Markov properties,

yet carefully relax the limitations of traditional models. We developed a context free

grammar to capture the execution sequence among components, and the derivation results

provide a guideline for generating new states. These states capture the execution history

so that the history-independent Markov models can still be utilized to model history-

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

dependent software behaviors. Consequently, our state models not only satisfy the

Markov properties, but also capture all different execution scenarios of software; i.e.,

deterministic software behaviors, probabilistic software behaviors, and execution history

are taken into account by elaborating all of the possible execution paths to address

different outcome.

5.1 Limitations of Traditional Markov-Based Reliability

Modeling

Traditional Markov-based reliability models are suitable for modeling probabilistic

software behaviors due to the properties of a stochastic matrix. In this section, we

describe the problems that occur when deterministic software behaviors, hybrid

behaviors, and execution history are considered, based on traditional Markov-based

reliability modeling.

5.1.1 Deterministic Software Behaviors

The first problem is the difficulty in modeling software with deterministic behaviors, in

which the inter-component control transfers are predefined, i.e., not a probabilistic

random event. A deterministic software behavior means that a chain of executions has the

transition probability equal to 1 between every two consecutive components. The

deterministic execution chain has either one of the following properties:

1. independent of execution history, if each component in the chain is executed

exactly once.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 . dependent on execution history, if at least one component is executed more than

once.

The first case is not only a deterministic process, but also a Markov process, with

all its transition probabilities equal to 1. This can be modeled using traditional

approaches. In the second case, there exists a component that has more than one

immediate successor or predecessor. Therefore, the transition from this component to its

next component depends on its predecessors, i.e., execution history. Furthermore, due to

the property of deterministic processes, the sum of transition probabilities from one

component to all its immediate successors is greater than 1. This violates a Markov

property that the sum should be equal to 1; thus this chain of executions is not a Markov

process. The modeling of a deterministic and history-dependent chain, an unresolved and

challenging issue, is the theme of this chapter.

If a chain is independent of execution history, despite when and where a component

is executed, the executions of the same component always uses the same state. Thus, the

total number of states for a Markov process is the same as the number of components;

regardless of how many times each component is executed. This is because the transitions

from one state to all of its possible next states are simply assigned with probabilities

without considering that in certain situations a state can only transit to some of its next

states. On the other hand, if a chain is dependent on execution history, this implies that

multiple states are needed to reflect the impact received from the component’s

predecessors. Since a component may be present several times in a chain, each presence

requires a distinct index to distinguish the consequences of the impact of its execution

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

history; thus multiple states must be used to represent various executions of this

component.

(a)

(b)

Figure 7: (a) Deterministic transition diagram and (b) probabilistic transition
diagram for component running sequence — >B—>D—>

The following example demonstrates the difficulty of modeling deterministic

behaviors by using traditional Markov-based models. A deterministic process, shown as

—>A-*B—>C—*B—>D—», has transition probability 1 between every two consecutive

components, in which component B is executed twice. The first B receives the control

from A, and transfers to C. The second B receives the control from C, and transfers to D.

Component B transferring its control to C or D does not involve uncertainties. Instead,

the transition is predictable from its predecessors. Thus, component B is dependent on

execution history. Therefore, modeling two states Si and 54 for component B is necessary

to consider deterministic behaviors and execution history, as shown in Figure 7(a).

In Figure 7(b), we demonstrate a counter example by intentionally modeling the

process as a Markov process. We assign 0.5 transition probability for both B to C and B

to D to satisfy Markov properties, because they have the same number of executions. To

demonstrate the potential reliability difference, we assume that all the components have

the same reliability r. In Figure 7(a) we yield software reliability r5, which is the product

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

of the reliabilities of the execution components as well as the transition probabilities that

are all equal to 1. Figure 7(b) has a result of reliability r3/(2-r2), considering all possible

execution paths. As a result, Figure 7(a) and 7(b) can have significantly different

reliability measures.

Deterministic software behaviors can also occur in the architectures of the call-and-

retum style [81], if a component calls several components in sequence. Because there is

no conditional statement involved, we cannot assign transition probabilities from the

caller to its called components. This style is classified into the following three basic

types. With a caller component,

1. several components can be called in sequence,

2 . its callee component can also call others, and

3. its callee component can be called a number of times.

Software architectures [27,61] can be the combinations of the above. In this

Section, we will discuss the first and the second cases, where the third case regarding to

the number of calls will be elaborated in Section S.2.2.2 to address deterministic software

behaviors and execution history for call-and-retum style. The modeling differs from the

aforementioned call-and-retum style discussed in Section 4.1.4, which considers only

probabilistic software behaviors and no execution history.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.1.2 Non-Terminated Processes

The deterministic and history-dependent problem can further result in a non-terminating

process when there are an infinite number of component executions. This scenario occurs

when the software execution forms a loop and the execution of the loop cannot be

terminated. For instance, if there are three components A, B, and C, component A first

calls B, returns, and then terminates. However, before the termination, if B calls C, and

then C also calls B, the software will only progress between B and C without termination.

In this case, we need either B or C to have a branch to break the loop; otherwise, software

will not terminate.

For large-scale software, there may exist non-terminated execution paths; however,

the system can still provide services if those processes are not executed. To evaluate

overall reliability of the software, it is necessary to take all the execution paths into

account, including both terminating and non-terminating processes. Therefore, it is

necessary to be able to model the reliability of software even if software has non-

terminated execution paths. In addition, locating and fixing these non-terminating

processes will improve software reliability.

5.1.3 An Infinite Number of Hybrid Processes

The last problem is to show the difficulty when software has an infinite number of hybrid

processes. An infinite number of hybrid processes has an unlimited number of execution

paths, and each hybrid process will terminate. A hybrid process is a process in software

with probabilistic behaviors, and history-dependent deterministic behaviors all together.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

This problem is similar to the previous problem of non-terminating processes, but a

process has at least a branch to terminate the route of endless executions. Note that those

endless executions are deterministic behaviors and history dependent, whereas a branch,

a probabilistic behavior, prevents the non-termination problem.

Figure 8: Infinite control transfer problem

To illustrate the above situation, we demonstrate a simple architecture of the call-

and-retum style, which encounters an infinite number of hybrid processes, as shown in

Figure 8 . This architecture has a starting component A, which calls component B, and

then F. Component B calls C or transits to D. Component C calls B, and then calls E.

Because whenever B calls C, C will call B again, an infinite number of component

executions can form. The transition from B to D is a branch that prevents the non

termination. However, after finishing the execution of D, the control returns to B, returns

to C, then executes E, returns to C, returns to B, and so on. Therefore, we understand that

in each execution path component E must have the same number of executions as C, but

with only one execution of component D. Here, we represent all these hybrid processes as

U AB(CB)nDE^F, using a regular expression.
n ~0

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The difficulty in modeling the above scenario is to ensure that some components

have the same number of executions or a certain ratio of presence in the process, such as

components C and E appear the same times in the above example. To achieve that, the

execution history, the deterministic behaviors, and the probabilistic behaviors all need to

be taken into account.

5.2 Methodology

To tackle the aforementioned problems, addressing the execution history and software

behaviors, our software reliability measurement:

1. models probabilistic, deterministic, and history-dependent software behaviors,

2 . addresses the non-terminating processes that provide no service results, and

3. considers all possible execution paths, including an infinite number of hybrid

processes, for the software.

Our approach is to construct a state model to address different software behaviors,

execution history and execution paths, and then utilizes the reliability formula {B2 },

from Appendix B, of a discrete-time Markov model to compute software reliability.

However, this approach differs from the construction of the traditional stochastic

Markov-based reliability models [21,48,58]. Traditional approaches modeled a state as an

execution of a component/module, regardless of where or when the component is

executed; whereas in our model, a state also depicts an index in the execution history

where a component was executed. Therefore, our approach utilizes multiple states to

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

represent the various indexes of the same component in the execution history, unlike the

traditional modeling approaches that allocate only one state for one component.

Accordingly, the generated states pre-capture the execution history so that the next state

will depend on the current state only. This allows us to utilize the discrete time Markov

models to model deterministic software behaviors and at the same time consider

execution history.

For an execution path that does not terminate, our state model treats this process as

a failure process and transits from the state where a component causes the non

termination to a failure state. Moreover, if a software system has an infinite number of

hybrid processes, our model eliminates the requirement of an infinite number states to a

finite number of states by first incorporating the construction of loops, and then modeling

the structure of the loops as a binomial tree. The loops consider software behaviors and

prevent the needs of history keeping, while the structure of a binomial tree covers all

possible execution paths.

In the construction of the state models, we introduce a grammar that can be used to

depict inter-component control transfers, and ultimately to derive the execution paths.

The grammar comprises sets of terminals, non-terminals, and productions. A terminal

represents a state at a specific index, within which a component is being executed. Note

that this component can be just one single component, or a set o f components

congregated into a virtual one in order to model certain types o f architectural styles such

as a parallel style, or fau lt tolerant style, etc. A non-terminal represents the status of a

component as to be executed. A production replaces the status of a component from “to

be executed” to “being executed”, and invokes the triggering events of this component.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Therefore, an execution path is represented as a list of terminals, derived through the

productions. The grammar considers software behaviors, and addresses the execution

history by allocating the same terminal in multiple indexes of a list. For example, in

Figure 7(a) the grammar derives two terminals for component B at index two and four of

a list. Depending on software, the grammar derives either a finite number or an infinite

number of execution paths.

Modeling an infinite number of execution paths using a finite number of states

requires a transformation scheme in order to utilize the Markov models. This scheme

makes use of the structure of binomial trees, and a constructed loop derived from the

grammar to model components that cause an infinite number of hybrid processes. In our

model, each node in a binomial tree is a loop with an identical list of terminals and non

terminals. Each edge in the tree is a transition to and back from a designated loop. The

structure of the binomial trees facilitates the modeling of all possible execution paths, by

allowing the transitions among any loops within a tree. The loops not only reduce infinite

states to finite states, but also ensure a correct number of component executions without

the needs of history keeping.

For all of the execution paths, some may not terminate. Our software reliability

measurement considers these execution paths as unreliable. Thus, in our grammar we

introduce a terminal err, which is derived from a non-terminal that produces no terminal

strings. Whenever the terminal err is reached, the state transition moves to a failure state

in the state model.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2.1 Grammar

To construct the state model for both probabilistic and deterministic system behaviors,

we utilize the idea of context free grammar and incorporate additional definitions and

notations to gather the triggering information of a component to the other components. In

the following,

■ A tenninal represents a state of the execution of a software component or the

encountering of an error.

■ A non-terminal is an intermediate symbol, corresponding to an upcoming event.

a A production replaces an undergoing non-terminal with terminals and non

terminals.

■ A starting symbol is the starting point of the derivations.

The grammar G = (T, N, P, S), for building a state model, consists of the following items:

1. A finite set of terminals T = C u E, C = {c, | 1 < / < n) and E = {err)\ Ci is a

software component of a system and err represents an error.

2. A finite set of different, intermediate symbols, called the non-terminals N - {C, | 1

< /< /!} , in which N l = {Cj | Cj derives no terminal string over C, Cy e N).

3. A start symbol S = C \ that starts all derivations.

4. P, a finite set of productions, where P = P 1 u P 2 u P 3.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5. P 1, a finite set of productions of the form C, —> c,X| ... Xm, where C„ XjE N - N l,

1 < j< m ,m > 0 .

6 . P2, a finite set of productions of the form C, —» c, X\ ... Xt, where X* e N x, Ci, Xj e

N - N \ I < j < k-l < m ,k> I.

7. P3, a finite set of productions of the form C, —> err, where C, e JV1.

Through grammar derivations of productions, we can build a state model,

addressing the problems of history-dependent deterministic software behaviors, non

terminating processes, and an infinite number of hybrid processes.

5.2.2 Deterministic Software Behaviors

Unlike a probabilistic behavior, a component in a deterministic process is definite as to

the next step or next few steps of its execution. Therefore, we need to address the

following two issues in order to yield a correct reliability measurement. The first is to

maintain the components’ execution paths, which can result in a component locating at

multiple different states in our state model for the same path. The second is to make sure

the total number of executions for each component at each state is correctly modeled.

5.2.2.1 Maintaining Execution Paths

To maintain all possible components’ execution paths for the deterministic software

behaviors, we make use of the finite set of productions P 1 defined in our grammar. This

set of production rules can be decomposed into three typical scenarios as follows:

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ C, —> CiXi...Xm, component c, calls m components in sequence for services, or

causes a series of transitions to m components, with m > 2.

• Ci —» c,Cj, component c, calls only one component q or transfers its control to

component q , with m = 1.

■ C, —> c„ component c, does not call or transit to any component, with m = 0.

The first scenario is that a component transits to or calls another component, the

second scenario is that a component transits to or calls several other components in

sequence, and the last scenario is a component transits to or calls no other components. In

addition, when a non-terminal C, appears on the left hand side of multiple productions, an

“or” statement, denoted as “|”, is used to distinguish the possible selections. For example,

component c t calls ci and then calls either C3 or c4. We utilize this “|” notation and

express the example as C\ C1C2C3 1C1C2C4 to manifest the possible choices.

A production rule records a component’s invocation or triggering details to other

components. Whenever carrying out a derivation, a non-terminal is replaced with

terminals and non-terminals, meaning that an execution path is derived on step further. A

derived terminal, excluding err, implies a state with a component to be activated. The

total number of executions for each component at each state will be discussed in Section

5.2.2.2.

In our state model, a list of terminals, derived from the production rules, implies the

execution path of the components in a list of states. Each terminal is allocated to a state

and the total number of states can be more than the total number o f components.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Typically, we are interested in deriving all possible execution paths as lists of terminals,

which we can utilize to calculate software reliability. Therefore, we need to discuss the

relationships among an execution path, a list of terminals, and the computation of

reliability.

For a sequential execution path —»C|—>ci—»...—»ct—», the derivations obtain k

terminals with 5—>ciC2... q , due to C,— 1, 1 < i < k-l and Ct—»c*. Following

conditional probability, let P(c,) be the possibility of successful execution of component

c„ and P(ci\d-\) be the possibility of successful execution of component c, under the

condition that c,.i was executed successfully. Therefore, the reliability of this process is

equal to either P(ci)P(c2>...P(c*) if components are independent of each other, or

P(ci)P(c2|ci)...P(c*|c*.|) if the reliability of c, is dependent upon c,.|, 2 < i < k. Therefore,

replacing each terminal in the list with a mapped component reliability, and multiplying

them together yields the reliability of this execution path. For example, replace c\ with

P(c,) and c* with P(c*) or P(c*|c*.,)-

Figure 9: Component c, calls k components cxl, cx2, cx*

Discussing deterministic behaviors of the call-and-retum style, we assume a

component c, calls k components cxi, cr2,..., in sequence. For simplicity, we assume

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

that these k components will not call other components. Conceptually, component c, is

only executed once, after finishing calling those k components cxi, cX2,..., ct* in sequence,

even though some callees were actually called many times.

To depict into details, we assume that each component consists of a list of

instructions. For generality, in this section we consider all the callees are called once and

leave the discussion of the number of calls to Section 5.2.2.2. We first decompose

component c, based on the list of instructions into ifc+1 sections c,1, c2, ... , c*+1, as shown

in Figure 9. Since these sections belong to the same component, we consider their

dependency. Thus, the reliability of component c, is equal to

P(d) = P(alncrn...nciM)

=P(cii)P(Ci2\cii)P(cii\cilnci2).. .P(c,*+I|c /n c ,2n . ..n c /) .

The execution path is shown as —»Ci,-»cX|—»c,2—>...— »c*+l—». The derivations

yield S— fol lowing C,—>c,Xi ...X*, and X,—>cXi, 1 < i < k. The reliability of this

execution path is

P(ci1)P(cx i |c,1)P(c,2|c,1 ncx,)... P(dk+1 |c,1 ncx i n c 2n ... ncxk)

= / ,(c,ln c t in c i2n . . .n c ^ n c , i+1)

= P(Ci'nc,2n . . .n c ,i+ln c ti n . . .n c^)

=P(c'r*rn. ..nc,k+l)P(cr\|c ,W ,2n . . . n c ^ '^ c ^ l c / n c f n . . .n c ,t+1n c ,i)„ .Pic^c'
2 *+! vndr\...nci n c j in . . .n c ^)

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

= P(C[) P(cx i) P(cx2)...P(cxk), if components are independent

or

=Pi£j}P(cxi|c,1)P(cx2\c,2) ...P(cxk\ctk), where cXJ depends on cj, 1 < j< k

=P(Cj)P(c, i |c,)P(ct2|c,)... P(c,*|c,), considering a component instead of a section as a

basic unit.

Similarly, we calculate the reliability of this call-and-retum execution path by

replacing each terminal in the list with a mapped component reliability, such as ci with

P(c,)........... with P(cxk), or P(c,*|c,) if dependent, and multiplying the component

reliabilities together to yield the reliability of this execution path.

5.2.2.2 The Modeling of the Number of Calls to a Component

In Section 5.2.2.1, we derive an execution path as a list of terminals for deterministic

software behaviors, based on the derivations from the production rule set P 1 of the

grammar G. Each terminal represents a state with a component to be executed in that

state. The terminals in a list however do not manifest the number of executions that will

be carried out for the components. This information is collected based on the design

information.

As a component can be called a number of times, we classify the situation into the

following three scenarios:

■ A component is called exactly once.

■ A component is called exactly n times.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ A component is called an indefinite number of times.

Assuming three components c\, ci, and C3 with component reliabilities R\, Ri and Ri,

respectively, component c\ calls c3 a number of times, then calls C3 once, and finally

terminates. Applying the above three scenarios to the number of calls, we yield the same

derivation results C1C2C3 from our grammar G, as 5 —» C |—» C1C2C3 —> C1C2C3, where Ci—>

ci and C3—> C3 are because both C2 and C3 call no component. The following demonstrates

the construction of our state model for each scenario:

(a)

— * © *' 'Qy~Rl ■•(H)-53—•

(b>
R\ (^ 2) R3

“ KV) ^ 0 ------------------- ^

Figure 10: Three types of calling scenarios

Scenario 1, component c\ calls component ci exactly once and then calls C3 once:

In this scenario, components ci, ci, and C3 are all executed exactly once. Therefore,

system reliability should yield RiRiRy The modeling of this scenario has been addressed

in the deterministic software behaviors, discussed in Section 5.2.2. With st = (£*, C) and

state model Sm defined in Section 3.1, this scenario has three states si = ({ e / }, {ci}), 52 =

({e,2}, { C 2 }) and S 3 = ({ci3}, { C 3 }) , and two possible state transitions J (s t , {ei2}) = S 2 and

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

S (s 2, {«i3}) = 53. When the transition reaches state s2, event e 2 is to activate component

C2. Similarly, when the transition reaches state 53, event e\ is to activate component C3.

We construct the state model Sm ~ (Q, S, s {, s2, M), where Q = {si, s2, 53}.

Figure 10(a) is the state diagram of this scenario, where si, s2, and 53 are the

mapping states to components c\, c2 and C 3 . A 3 x 3 matrix M is constructed as below.

M (1,2) = /?,, state 5, reaches state s 2
M (2,3) = R z , state s2 reaches state s2 , for 1 < i , j < 3 ... (12)
M (i, j) = 0, otherwise

Scenario 2, component c\ calls component c2 exactly n times and then calls c2 once:

In this scenario, we understand that both components ci and C3 are only executed once,

but component c2 is executed exactly n times. Therefore, system reliability should yield

/?i(^2)”/?3* where (R2)n considers those n times of execution of component c2. This

scenario is almost identical to scenario 1, except that we have to consider component c2 is

executed n times not just once.

Figure 10(b) is the state diagram of this scenario, where si, s2, and 53 are the

mapping states to components c \, C 2 and C 3 . A 3 x 3 matrix M is constructed as below.

Note that M(2,3) has entry value (R2)n to address the n times of executions of component

ci.

M (1,2) = R {, state s{ reaches state s 2
M (2,3) = (R 2)n, state s 2 reaches state s3 , for 1 < /, j < 3 .. {13}
M (1, j) = 0 , otherwise

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Scenario 3, component c\ calls component c 2 an indefinite number of times and then

calls cz once:

In this scenario, components c\ and cz are both executed once. However, component c\

may call component cz possibly 0 time to many times. Therefore, we know that

component c\ will encounter a condition to either transit to cz or cz. We assume that the

transition probability from c\ to cz is P |2, and the transition probability from c\ to cz is

P\z. Therefore, system reliability should yield R\R\z / (1 - P i2/?2). Based on the definitions

of Sj = (£ \ C) and state model Sm in Section 3.1, we construct three states .V| = ({ci1},

{C|}), sz = ({e-i2}, {c2}) and S3 = ({ci3}, {03}), and three possible state transitions <J(si,

{^i2}) = -s2, S (s2, {ci2}) = s2 an d £ (s2, {ci3}) = s3.

Typically, this problem is basically identical to the call-and-retum problem in

Section 4.1.4, except that we would like to consider the deterministic behaviors. Thus, we

arrange the configuration into a different view as shown in Figure 10(c), which is the

state diagram of this scenario, where si, sz, and 53 are the mapping states to components

c i , cz and C 3 . A 3 x 3 matrix M is constructed as below. Note that M(2,3) has entry value

Piz, instead of /?2P i3, to enable component c2 to be executed 0 time. The entry A/(2,2) has

value PizRz in a loop to address the indefinite number of executions of component c 2.

M (1,2) = /?,, state s, reaches state s2
M (2,2) = P^R-,, state reaches state 5,

' * - ,fo r I < i , ; < 3 ...{14}
M (2,3) = P,3, state s 2 reaches state s2
M (1, j) = 0, otherwise

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2.3 Non-Terminating Processes

A non-terminating process, having an infinite number of component executions, does not

terminate. The derivations for this process yield no terminal string. Such a process,

providing no service results to a request, is considered as an unreliable process in our

model.

To model, we look for the first non-terminal Ck that appears in the derivations,

where C* € N l. Because this C* produces no terminal string, the execution path will

definitely not terminate. In other words, C* results in an unreliable service. Therefore, we

replace C* with the terminal err, and eliminate the derivations after Ck- The terminal err

represents a transition to the failure state in our state model, so that the computation of

software reliability measurement will not include this non-terminating process.

In details, we introduce two finite sets of productions P2 and P3 in the defined

grammar. In general, the triggering information is modeled as a production in P 1 with the

format C, —» c, X\ ... Xm. However, if 3A* e N l, k < m , XjE (TV-A1), 1 < j < k, we instead

add two productions C, —> c, Xi ... Xk to P2, and Xk —> err to P3. With P 2 and P 3, a non

terminating process now ends with a list of terminals, with one and only one terminal err

at the end of the list. Therefore, when our state model reads in the terminal err, the

transition goes to a failure state.

5.2.4 An Infinite Number of Hybrid Processes

Hybrid software behaviors, composed of probabilistic and history-dependent

deterministic behaviors, may result in an infinite number of execution paths. In Figure 8 ,

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

there exists an infinite number of execution paths, represented as U AB(CB)"DE?F, using
n=0

a regular expression. In this case, the derivations will produce an unlimited number of

lists of terminals. This requires an infinite number of states and hinders the use of the

Markov model for software reliability measurement.

Therefore, we introduce a transformation scheme to resolve the problem of an

infinite number of hybrid processes. The objective of the transformation is to:

■ reduce infinite states to finite states, and

■ model all possible execution paths to ensure that the reliability measurement is

not over- or under-estimated.

To reduce infinite states to finite states, the idea is to model a finite-state loop,

defined as a recurrent loop, for each branching component, defined as a break-point

component that has at least one but not all branches causing an infinite number of hybrid

processes. To model all possible execution paths, the recurrent loop is constructed based

on the structure of binomial trees that tackles all the execution paths. A node in the

binomial tree is a set o f basic clusters, and an edge is a directed link for the transition

from one set of basic clusters to another identical set of basic clusters. In the following,

we will use our previous grammar to define a break-point component and its set o f basic

clusters.

• A break-point component c, is a branching component, whose mapping non

terminal Ci appears on the left hand side of multiple productions, in which at least

one but not all productions derive C, on the right hand side, where C, e N - N l.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

■ A set o f basic clusters, for the break-point component c„ is a set of lists yielded

through the productions starting from C„ where the derivations continue on all

non-terminals except C„ and produce at least one C, in each list. However, for

each Cj, the non-terminal of another break-point component c} where / *■ j, occurs

during the derivations of C„ the production rules of Cj that produce no non

terminals Cj are chosen to continue the derivations.

A break-point component c, guarantees the occurrence of an infinite number of

execution paths, because C, can derive C, on the right hand side. However, this branching

component has at least one branch to stop calling itself persistently. A basic cluster of a

break-point component c, combines a list of terminals with a number of non-terminals C,.

The derived terminals depict which components to execute and the non-terminals C,

indicate that a break-point component c, can further derive itself a number of times. Note

that our model considers the number of derived non-terminals C, in a basic cluster as

finite.

For a break-point component, our transformation scheme first adjusts each basic

cluster by moving its final non-terminal to the end of the list. Due to no history keeping

in the Markov model, this adjustment prevents history keeping and ensures that some

components have the same number of executions or a certain ratio of presence in the

process. Whenever the final non-terminal is reached in a basic cluster, a transition goes

back to the state of the first derived terminal without generating a new state. Therefore, a

loop is formed with the final non-terminal shares the same state as its first derived

terminal. This sharing means that the final non-terminal now takes over the position of its

own break-point component. Note that such a loop is a subset of a recurrent loop.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

If we take Figure 8 for example, component B is a break-point component, with one

branch deriving B itself. There is a basic cluster bcBe for component B that is derived

from B —» bC —> bcBE —» bcBe. Note that B is in the list and not further processed.

Following the adjustment, we move the final non-terminal to the end of the list. The basic

cluster bcBe becomes bceB. Figure 8 can be transformed into Figure 11 with b to B

sharing the same state. The original regular expression U AB(CB)nDF?F becomes

The reliability of an execution path is the product of the reliabilities of the executed

components, and connectors as well as the underlying transition probabilities. Based on

the commutative law in mathematics, ab is equal to ba if a and b are real numbers.

Because the reliabilities and probabilities are all real numbers, the adjustment will not

yield a different result. Thus, we can expect the same software reliability from the two

regular expressions above.

ABiCBE) DF.

Figure 11: An infinite number of hybrid processes

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The above is a simple example and the recurrent loop is the same as its basic

cluster. In the following, we will explore the modeling of a break-point component

having either only one single basic cluster or having multiple basic clusters.

5.2.4.1 Single Basic Cluster

Here we model a break-point component c„ having only one basic cluster that includes k

non-terminals C, in the list. The aforementioned adjustment to a basic cluster is our first

step in building a loop, as is the case when it = I for Figure 8 . For it > 2, we not only need

the adjustment, but also have to address all of the possible execution paths. Since in a

basic cluster each of k non-terminals Ci has the capability to go through the basic cluster

again, there are &"1' 1 alternative execution paths for going through m iterations of the basic

cluster, where m > 1.

Recall the construction of a loop for a basic cluster. The final non-terminal shares

the same position as its first derived terminal. Since all the non-terminals are identical,

for illustration we denote the invoking non-terminal as C„ which invokes k occurrences

of C„ denoted as C,1, C,2 C,A Forming a loop, we have the first derived terminal c,

and C* share the same position, as shown in Figure 12. After the sharing, C* takes over

the position of its own break-point component c„ and can invoke k non-terminals inside

its own basic cluster again.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 12: A starting non-terminal C,-, denoted as C ,\

invokes k times of C„ denoted as C,1, C,2, C , ‘.

Most importantly, C,1, C,2, C * ' 1 can each also invoke k non-terminals, and result

in an infinite number of hybrid processes. Likewise, we utilize the same basic cluster for

C,1, C,2....... C,-*'1, as shown in Figure 13. Assuming 1 < s < t < k , when the Cl, invoked by

C t , invokes another k non-terminals, we can proceed the control from the loop of Ci to

the loop of C ‘, without violating the execution sequence, because s < t. However, this is

not backward compatible when C t is invoked by Cl, s < t. Because the loop of Cl is

already behind the loop of Ct, the control from the Cl loop to the Ct loop subsequently

must go through the loop of C*.

(c t\ M l o O '

Figure 13: C,1, C , \ C * can each further invoke another k non-terminals.

To resolve the backward compatibility problem, our transformation scheme utilizes

the characteristics of binomial trees, as shown in Figure 14. As a result, the exact possible

execution paths can be modeled and infinite states can be reduced to finite states. In [16],

the properties of binomial tree Bm are summarized as follows:

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1. there are 2m nodes,

2 . the height of the tree is m, and

3. there are exactly
f ... Nm

i
\ J

nodes at depth i for / = 0 , 1, m, and the root has degree

m, which is greater than that of any other node; if the root’s children are

numbered from left to right by m -1, m-20 , child i is the root of a subtree fl,.

The structure of a binomial tree can be concluded as a higher degree node always

has links to all its lower degree nodes. The root node of tree Bm has degree m and its m-1

children have degrees m-1 to 0 from left to right. Likewise, a node with degree k, k < m,

is the root for binomial tree fl*, whose children have degrees k-l to 0 from left to right.

This can resolve our backward compatibility problem.

(a)

(b) 0
1
2
3
4

Figure 14: (a) The binomial tree Bm is represented. A triangle represents

a rooted subtree, (b) Node depths in B4 are shown.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Recall that the backward compatibility problem occurs when C t is invoked by Ct

and s < t. We cannot advance from the loop of Ct to the loop of Ct- To the contrary, the

structure of the binomial tree allows a node with higher degree to go to all its lower

degree nodes. Therefore, if we construct the structure of Ct with the same structure as the

binomial tree B t \, we can allow C t be invoked by C t and resolve the problem.

k-I

Figure 15: The transformation scheme for a break-point component C,

invoking k non-terminals C,.

Essentially, a node in a binomial tree represents a basic cluster that forms a loop in

our transformation process. When a basic cluster has k non-terminals, the binomial tree

B j.i is utilized to construct the structure of the ith non-terminal, I < i < k-l. After the

construction shown in Figure 15, we can see the structure of the fcth non-terminal has the

structure of the binomial tree This matches Figure 14(a). In other words, there will

k 1be 2 ' of basic cluster expansion for resolving k non-terminals.

After the transformation is completed, an additional step is to resolve the non

terminal Ct into terminals inside each loop. For each C, who will further invoke a basic

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

cluster, we replace C, with c,. Otherwise, we replace C, with the terminals derived from

the productions that will not cause a basic cluster. Since C, e N - N \ Ci can derive

terminal strings.

Here we show an example where a break-point component cz is called by c\. Its

mapping non-terminal Cz either go through Cz —> czCzCzc4Czc$CzC(>, or follows a

production Cz —» czcy. Note that the basic cluster of cz is czCzCzc4CzCsCzC(>. We know that

the binomial tree Bz will be utilized for the transformation. We first move the final Cz to

the end of the list and obtain czczCzc4CzCf,ctCz■ Figure 16(a) shows the loop, where the

final non-terminal Cz shares the same position as the invoking Cz, Figure 16(b) shows the

complete transformation by using Bz binomial tree, and Figure 17 shows the transition

diagram with all terminals.

(a)

(b)

Figure 16: (a) A loop based on a basic cluster (b) The transformation

by using Bz binomial tree

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Note that the modeling removes some of the branches from c2 to cj, we have to

change those transition probabilities between components c2 and c-i to 1. This is easy.

Suppose that component c2 has component reliability P2, and to a has transition

probability P27. If we want to replace Pi7 with 1, we can replace Ri with R iP n and

achieve the same result.

Figure 17: The transition diagram with all terminals

The above is just a single branch adjustment. Assume that there are branches

removed from component c, to its subsequent components and more than one branch is

left. If the summation of the transition probabilities of these left branches is equal to P.

We can adjust the reliability of c2 as RiP and adjust each branch by multiplying 1/P to its

original transition probability. In this case, the sum of the transition probabilities of all

the left branches is equal to 1.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.2.4.2 Multiple Basic Clusters

Multiple basic clusters occur when a break-point component has more than one basic

cluster. In this case, we have to model a set of basic clusters with more than one element

for this break-point component. In the set, each basic cluster can derive a different

number of non-terminals.

The modeling for each basic cluster is basically the same as the aforementioned

single basic cluster model. However, to ensure that a derived non-terminal can choose an

alternative basic cluster to execute, each non-terminal, which originally expanded with

one basic cluster in the previous section, expands with a set of basic clusters. After the

modeling of all basic clusters, the initial break-point component also expands with a set

of basic clusters.

Figure 18: The break-point component c i has two basic clusters c\CzC\c*C\C4

and C1C3C1C4

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 18 shows an example of a break-point component, with two basic clusters,

based on the following productions:

S—»C| Cj—> C1C4 Ci—> CiC2 Ci—>ciC3 C2—*ciC\Cy C3—>C3C|C4 C4—>04

Based on the grammar, we yield two basic clusters C1C2C 1C3C1C4 and cic3C|C4 as a

set of basic cluster for the break-point component ci. For the basic clusters C1C2C 1C3C1C4

and C1C3C 1C4, we utilize binomial trees B\ and Bo, respectively. The main difference of

multiple basic clusters, comparing to one single basic cluster, is that a break-point

component now expands with the complete set of basic clusters instead of just one. Such

a modeling is to ensure that a break-point component, with multiple basic clusters, can

transit to any basic cluster in the set.

5.3 Discussion

We develop a context free grammar and utilize the production rules to model the

triggering information among software components. The derivations of the production

rules produce either a Finite set of terminal strings or an infinite set of terminal strings.

Typically, our architecture-based reliability model makes use of the set of terminal

strings to construct a state model to address execution history and then use this state

model to compute software reliability.

However, if the set of terminal strings is an infinite set, we encounter a challenge to

model an infinite number of states through the finite state Markov models. Therefore, we

develop a technique by identifying the break-point components, and producing the set of

basic clusters for each break-point component. With a minor permutation to construct a

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

loop for each basic cluster, we resolve the modeling of an infinite number of execution

paths utilizing binomial tree structures.

In this section, we justify that the minor permutation does not affect the final

reliability measurement results, due to the commutative law that ab = ba, if a and b are

numbers. We take a simple software with three production rules to demonstrate that the

reliability results are identical between the mathematics computation following the

grammar derivations and our modeling approach in the architecture-based software

reliability model. Therefore, when software becomes more complex that inhibits the

simple mathematics computation through the grammar derivations, we can still take

advantage of our architecture-based reliability models to compute software reliability.

Let Rs be the reliability of component s and Rr be the reliability of component r. In

this software, we have

5 —» sSR, transition probability P

S —> s, transition probability 1-P

R —» r, transition probability 1

Component s either calls s itself once and then calls component r once with a probability

of P, or calls no component with a probability of 1-P. When component s is called once

by itself, this called component s can further decide to call s itself once and then r once

with a probability of P, or not to call any component with a probability of 1-P.

Component r never calls any component with a probability of 1.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.3.1 Mathematics Computation:

From the grammar derivations, we have the following terminal strings:

s , ssr, sssrr, ssssrrr........

The occurrence possibility for each string is equal to:

(1-P),P(1-P), P ^ l-P), P ^ l-P)

* sssSRRRsSR *■ ssSRR

1-P 1-P 1-P 1-P

ssR sssRR

sssrRssr

1

sssrr

The system reliability is computed as

flv(l-P) + RfRrP(l-P) + R ' R ^ d - P) + ...

= £ p 1',P r'" lP '” 1(l - P) = /f1(l - P) ------ = A i l l A . ..{15}
<1=1 l - R . R . P l - R . R . P

5.3.2 Modeling Approach:

Component s is a break-point component, because it has a branch and a basic cluster srS,

derived from S -> sSR —> sSr. We first move the last non-terminal 5 to the end of the list

to become srS, and then combine the small s with the big 5 into state s\ to form a loop,

and allocate component r to state si. A final state 53 is added for a virtual component / to

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

assure that all the states in the transition matrix M are transient states, meaning M(3j) =

0, 1 < j < 3. The component reliability Rf for this virtual component / i s assigned with 1

without affecting the reliability measurement.

. = ({ , ' } , { 5 }) , * 2 = ({ e . 2} , { r }) , S3= ({ e , 3}, t/1)

£(■*1, {e\2}) = *2, S(S2 , {*.'}) = *1, and <?(si, {*?i3}) = S3

1,2) = RSP, Af(2,l) = Rr, M(1,3) = Rs(l-P), and 0 ’s for all the other entries.

Based on the above three states, the state diagram is shown as follows:

T =

S
F

*1
s,

S
1
0

F
0
1

0 l - R ,
0 1 - R r
1 0

0
0
0

0

0 0
0 0

RSP Rs(l ~ P)
0 0
0 0

M =
0 R,P R , (l - P)

Rr 0 0
0 0 0

I - M =
1 - R , P - R s(l - P)

-Rr 1 0
0 0 I

\ I - M \ = 1 -R ,R ,P

\V - M)u\ = Rs(l-P)

(7-Af>3., =
- r , p - Rsa - p)

I 0

System reliability R = (- l) i+1 Rf = (~ l)3+l -̂ ,(1 P) x l = ■- P)
\ I - M I - R A P I - R A P

{16}

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

From {15} and {16}, we conclude that our modeling approach yields the same result as

the computation through mathematics computation.

5.4 Implementation

In Chapter IV, we proposed an architecture-based software reliability model, which takes

software architecture as input and measures reliability based on the understanding of

architectural styles [24,26,82]. Although the approach follows Markov properties, it

assumes a software process is a Markov process. In this Chapter, we relax this

assumption in order to apply the model to a wider scope of software. Therefore, this

model incorporates both probabilistic and deterministic software behaviors, and takes

execution history into account as well. Here we present the stepwise construction of our

state model:

1. Our model takes deterministic as well as probabilistic software behaviors as

inputs, where a component can call or transit to a number of components in

sequence or based on condition.

For example, there are deterministic behaviors such as the transitions from A to B,

C to F, G in sequence, D to F, G in sequence, E to H, G to F, I in sequence, H to

/, I to J, and a conditional behavior from B to either C, D, or E.

2. For generality, assuming software starts from the execution of an initial

component, a grammar is developed and utilized to record the triggering and

transition information into productions. When encountering conditional

statements, multiple productions share the same non-terminal on the left hand

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

side. This is frequently seen as an “|” statement. The grammar facilitates the

modeling of history-dependent deterministic software behaviors.

From the transition information shown above, assuming A is the initial

component, we have the following productions:

S—>A A-^aB B—*bC \ bD \ bE C ^c F G D—>dFG

E—>eH F—>f G-*gFI H -*hl I ^ i J J-+j

3. The derivations of the grammar can produce lists of terminals that illustrate

different execution paths, which may be Markov processes, deterministic

processes, or hybrid processes. A terminal means that its mapping component is

being executed in a state, and the position of each terminal in the list represents an

index of the transition. In our model, our focus is not just in generating all of the

lists of terminals, but also in minimizing the total number of states required to

construct the state model, in order to compute software reliability.

For example, the productions, from item 2 above, yield three lists of terminals as

abcfgfij, abdfgfij, and abehij, as shown is Figure 19 below. As we can see, these

three lists share the same prefix “ab", which only requires two states for terminals

a and b. The first and second lists also share the same postfix \ which only

requires five states for two f s , one g, one and one j. Figure 19 shows a total

number of 11 states of those three lists of terminals.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Three derived lists of terminals

a b e h i j

* a b d f g f i j
a b c f g f i j

Figure 19: Terminal lists vs. a state diagram

4. The grammar assists in detecting a non-terminating process, in the situation that a

non-terminal derives no terminal string. For such a non-terminal, the state model

has this process transiting to the failure state.

For example, there are two productions A—>aBA, and B—>b. We understand that A

cannot derive a terminal string. Therefore, when the derivations reach A, the

execution path will never terminate. For such a non-terminal, we have a

production with A-*err. Therefore, when this non-terminal is reached, the state

model has this process transiting to the failure state.

5. The state model utilizes the defined grammar to model deterministic behaviors,

but is insufficient to model an infinite number of execution paths. Thus, we

introduce the construction of a recurrent loop, which is composed of a number of

loops constructed from a set of basic clusters. To ensure all the execution paths

are taken into account, the structure of binomial trees B*.i is used for a break-

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

point component with k basic clusters in the set. As a result, the required states

are reduced from an infinite number to a finite number and at the same time all

the execution paths are modeled.

5.5 An Example

A software system consists of six components ci, cj, cj, C4, C5, and c6. The initial

component c\ calls ci once, returns, then calls c$ once, and then terminate. Component c2

either calls C3 once, or transits to Cf,. Component C3 calls C2 once, returns, and then calls

c4. Component C4 calls C2 once, returns, and then calls C5. The reliability /?, of each

component c, is shown below:

Rx - 0.999 R 2 = 1.0 /?3 = 0.998 = 0.997 Rs = 0.999 R6 = 1.0

The reliabilities of connector are equal to 1 except L2,i - 0.999. For the

deterministic software behaviors, the transition probability from a state to its next state is

equal to 1, except for a branching component. Therefore, we only need to take into

account the transition probabilities of a branching component. In our example,

component C2 is a branching component because it transits to either C3 or c6. We assume

that the probabilities for P2 .3 and P2.6 are as follows:

P2.3 = 0 2 P2,6 = 0.8

The following is the constructed grammar G = (T, N, P, S).

T= C u £ = {ci, c2, c3, c4, cs, c6, err}

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

N = {Ci, Cz, C3, C4, C5, Cfi}

P = P , u P 2u P 3

P* = {Cl—►cCzCs, C2—>C2C3 I CzC(,, C3—>C3C2Ct, C4—>C4C2Cs,

C5—» C s , C(t >C6 }

P 2 = 0, P3 = (f,

S—>C|

Component cz is a break point component, because it is a branching component and

its mapping non-terminal C2 derives Cz itself. Note that the basic cluster of cz is

C2C3C2C4C2C5, derived from C2 —> C2C3 —> C2C3C2C4 —> C2C3C2C4C2C5 —> C2C3C2C4C2C5. We

know that the binomial tree B\ will be utilized for the transformation, because one C2 can

derive two non-terminals of C2. We first move the final C2 to the end of the list and

obtain C2C3C2C4C5C2. With this basic cluster and the production set P 1, we construct the

state diagram, as shown in Figure 20.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 20: A state diagram for sample software with one basic cluster

The following shows the construction of our state model Sm. With s, = (£*, C), and

S(s(, E!) = Sj, this software has a total number of fourteen states from si to su , as shown in

Figure 20.

5 l = ({ < ? | ' } , { C | }) 5 2 = ({ C | 2 } , { C 2 }) 5 i = ({ f i 3 } , { C 3 })

s4= ({ e ,4},{c2}) 5 5 = ({ C | 5 } , { C 6 }) 5 6 = ({ C , 6 } , { C 4 })

■5 7 = ({ C l 7 } , { C 5 }) 5 8 = ({ C l 8 } , { C 3 }) 5 9 = ({ C l 9 } , { C 2 })

■ S t O = ({ C i 1 0) , { C 6 }) 5 n = ({e ,"M c4}) 5 , 2 = (I C , 1 2 } , { C 5 })

II<7 5 | 4 = ({ C . , 4 } , { C 5 })

From the above states, the following shows 15 possible transitions between two

states out of those 14 states:

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

£(•*1, {<?12}) = -S2 8(sZ, { ^ l 3 }) = -SJ £ (* 2 , {<?l'3}) = *13

8 (s j , let*}) = s4 8 (s 4, { e i 5 }) = 5 5 S (S 4 , { e i 8 }) = S 8

S(ss, [e\6}) = s6 S(s6, { e \)) - s 7 8 (Sy , {ej2}) = S2

8(s», { e 9}) = s9 OII
OW*0

£ (* 1 0 , { ^ 1 1 ' }) = $ 1 1

£ (* 1 1 , {<?i‘2}) = S i 2 £ (* 12. {<?|4}) = *4 £(*.3, {<M14}) = S14

Based on the definitions of our state model in Section 3.3, we have Sm = (Q, 8 , s/,

Sk, M), where Q = {.si, S2 , S3 , s4, ss, s6, sy, s%, sg, sio, sn , .S12, $13, su}, the initial state is si,

the final state is 514, and the transition matrix M is computed as follows:

*1 *3 *4 *5 *6 *7 ■*8 s 9 *10 *11 •*12 •*13 ■*14

5 I '0 .999 0 0 0 0 0 0 0 0 0 0 0 0

s z 0 0 .1998 0 0 0 0 0 0 0 0 0 .8 0

s i 0 0 0 .998 0 0 0 0 0 0 0 0 0 0

s* 0 0 0 0 .8 0 0 .1998 0 0 0 0 0 0

S5 0 0 0 0 0 1.0 0 0 0 0 0 0 0 0

S 6 0 0 0 0 0 0 .997 0 0 0 0 0 0 0

*7 0 .999 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 .998 0 0 0 0 0

s9 0 0 0 0 0 0 0 0 0 .8 0 0 0 0

s \o 0 0 0 0 0 0 0 0 0 0 1.0 0 0 0

s u 0 0 0 0 0 0 0 0 0 0 0 .997 0 0

S12 0 0 0 .999 0 0 0 0 0 0 0 0 0 0

*13 0 0 0 0 0 0 0 0 0 0 0 0 0 1.0

S I4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Af(l,2) = R\Lu 2 = 0.999 x 1.0 = 0.999

M(2,3) = R 2 L 2 . 3 P 2 . 3 = 10 x 0.999 x 0 .2 = 0.1998

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A/(2,13) = R2L 2 6 P 2 . 6 - 10 x 1.0 x 0.8 = 0.8

MO A) - R3 L3 2 = 0.998 x 1.0 = 0.998

M(4,5) = R2 L2 6 P2 6 = 1.0 x 1.0 x 0.8 = 0.8

Af(4,8) = R2 L2 3P2 .3 = 10 x 0.999 x 0.2 = 0.1998

M(5,6) = /?6L3.4 = 10 x 1.0 = 1.0

A/(6,7) = RtU s = ° " 7 x 10 = 0.997

M(l ,2) = R5U 2 = 0.999 x 1.0 = 0.999

M(S,9) = /?3I 3.2 = 0.998 x 1.0 = 0.998

A/(9,10) = R2L2 6 P 2 . 6 - I-0 x 1.0 x 0.8 = 0.8

A/(10,U) = /?6l3.4 = 10 x 1.0= 1.0

A/(11,12) = R4 L4 5 = 0.997 x 1.0 = 0.997

A/(12,4) = R5 L4 .2 - 0.999 x 1.0 = 0.999

M(13,14) = R6 L 1 5 = 1.0 x 1.0= 1.0

n = 14. |(/-A/)„,|| = -0.67222, \I-M\ =0.682235, Rn = 0.999

System reliability/? = (- 1)"*1 R .—,------ ^-^= 0 .98434
n \ 1 - M \

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6

Conclusions

In this thesis, we developed an architecture-based software reliability model to compute

the reliability of large-scale software, addressing the architectural characteristics and

complexity, supporting decision-making on choosing a better-fit design in the early stage

of software process, and accommodating frequent component upgrades or updates.

We present a two-phase approach. The first phase utilizes architectural styles to

identify system structures in a formal way and resolves the modeling limitations of

homogeneous reliability models to address heterogeneous software behaviors. The

second phase is to relax the assumption of the Markov-based reliability models, which

assumes that the software process follows a Markov process, i.e. independent of

execution history. In other words, we take advantage of a homogeneous stochastic

Markov model, a white-box approach, to ease the modeling of the interrelationships

among components. We encompass the heterogeneity of system structures into our

model, and address the modeling of execution history, probabilistic and deterministic

software behaviors.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Because of using white-box approach, our architecture-based reliability model can

provide relative analysis to facilitate decision-making on alternative architectures and the

choosing of software components at an early phase of software process without the need

for retesting the whole software system.

6.1 Heterogeneous Software Reliability Modeling and

Component Sensitivity Measurement

The theme of our study is the evaluation of software reliability taking into account its

architecture, including both homogeneous and heterogeneous system structures. We

study software architecture, based on the characteristics of high-level architectural styles

to realize system configurations, component composition constraints, and high-level

semantics.

To compute system reliability, we develop a state model with the identified

architectural styles in a system as inputs to address different system structures or

heterogeneous architectures, and then apply the methodology of discrete time Markov-

based approaches to compute software reliability. Our state model differs from those of

traditional homogeneous Markov-based reliability models in several ways by allowing

not only one component to one state mapping, but also multiple components to one state

mapping. This enables the modeling of more complex system structures, such as parallel

computations and fault tolerant architectures, as well as heterogeneous software

architectures.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The above concludes our first phase, which allows us to model software that

follows Markov properties with either homogeneous or heterogeneous architectures. In

addition, we also conduct component sensitivity analysis by differentiating overall

system reliability with individual component reliability. This suggests the component

improvement sequence to effectively allocate resources and effort. For software with high

complexity, an informal approach can also be utilized to realize the critical components

to a system.

Because a software process is most likely not following a Markov process, we

develop our second phase approach to remove the fundamental barrier of traditional

Markov-based reliability models to broaden the application domains.

6.2 Deterministic Software Behaviors and Execution

History Modeling

Our modeling of software behaviors and execution history relaxes the Markov process

assumption of traditional Markov-based reliability models. The assumption implies that

the next component to be executed depends probabilistically on the present component

only and is independent of execution history. Because many types of software do not

satisfy the Markov process assumption, the applicability of the Markov-based reliability

models is thus very limited.

In our second phase approach, the modeling challenges are classifies into three

problem domains: deterministic software behaviors, non-terminated processes, and an

infinite number of hybrid processes. The deterministic software behaviors of a process

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

are definite as to the next step or next few steps of its execution. A non-terminating

process cannot terminate the execution because of an infinite number of component

executions. For the third problem, an infinite number of hybrid processes has an

unlimited number of execution paths, but each process is involved with execution history

and will eventually terminate.

To model deterministic software behaviors, our state model further allows a

component to locate in multiple states to address execution history. The creation of a new

state is based on the derivation of our grammar production rules, in which a derived

terminal represents a state, and a list of terminals represents an execution path. Following

the execution paths, the next component to be executed will depend deterministicaily on

the present component and its ancestors.

For a non-terminating process, we treat it as an unreliable process because it yields

no expected outcome. In our model, we identify the non-terminals in the grammar that

cannot derive terminal strings. These non-terminals are replaced with new productions

rules, which derive an err terminal to indicate the failure of a software process.

Therefore, the model prevents the loop of infinite derivations without yielding any results

and at the same time saves the computations of reliability measurement.

For the modeling of an infinite number of hybrid processes, a state model ideally

requires an infinite number of states, which limits the usage of finite states discrete time

Markov models. We resolve the infinite number of state expansion by utilizing the

structure of binomial trees to construct a recurrent loop, in order to exactly model all

possible execution paths without over- or under-estimating. Each node of the binomial

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

tree is a set of basic clusters that addresses the execution history. Such a recurrent loop

structure reduces the needs of an infinite number of states to a finite number of states.

Therefore, a state model can be constructed to compute software reliability.

AH in all, combining the first phase with the second phase, our architecture-based

reliability model not only addresses heterogeneous system structures, but also

significantly broadens the application domains. With its white-box characteristics,

relative software quality analyses can be conducted to achieve early prediction and

decision-making, which support effective resource allocations and reduce the chance of

future software failures. In addition, our architecture-based reliability model is expected

to be applicable to the reliability measurement for both software and hardware domains.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix A

Discrete Time Markov Models

In this section, we present the properties of discrete-time Markov models that serve as the

foundations of our architecture-based software reliability model. Our model utilizes

discrete-time Markov chains to compute system reliability. Because of the white-box

approach of discrete time Markov models, it allows the modeling of the interrelationships

to a level between two states. A discrete-time Markov model consists of

1. A finite set of n states,

2. A non-negative n x n stochastic matrix T = (/*,,), where Pt] is the transition

probability that the system will move to state Sj, given only that the system is in

n

state s„ where /*,, > 0, and E P» - 1, 1 < i , j < n.
; = I

3. A vector jP = (/Ti°..... /5,0) where Jp denotes the probability that the system is

initially in state i - I , ..., n.

In addition, for a stochastic matrix there are two important lemmas that support our

architecture-based reliability model. The detailed proofs are available in [9].

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Lemma 1: Let T be a stochastic matrix, which is standardized as shown below, then

f*M)< 1.

D, 0 0 0
0 00 D

T = standardized
0 0
a, a ,

D r 0
B r M

where D, is an n, x n, irreducible state transition matrix associated with its ergodic

equivalence class; M is a k x it square matrix and all the states corresponding to M are

transient.

Lemma 2: If M is an n x n matrix with p(M) < 1, then (I-M)1 is nonsingular and (I-M)'1

= lim £ A / ' = £A #‘ , where / is an identity matrix with the same size as M.
4 - m” i =0 i =0

When (I-M)'1 is nonsingular, the determinant of I minus M, denoted as is not equal

to 0. Therefore, based on these two lemmas, a standardized stochastic matrix T has \I-M\

The following lists the definitions and theorems in [9] that are associated with the

above two lemmas;

Definition 1: A state st is called transient if s, —» sj for some Sj but Sj t—> s„ that is, s, has

access to some Sj that does not have access to s,. Otherwise, the state s, is called ergodic.

Thus Si is ergodic if and only if s, —» Sj implies Sj —> s,.

0.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Definition 2: The classes of a Markov chain are the equivalence classes induced by the

communication relation on the set of states. A class a has access to a class fi if s, —> Sj for

some Si € or and Sj e fi. A class is called final if it has access to no other class. An ergodic

equivalence class is a class that contains all ergodic states and the class is final.

Theorem 1: Let a]*' denote the (ij) element r c \ q. A nonnegative matrix A is irreducible

if and only if for every (ij) there exists a natural number q such that a lq)>0.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix B

A Homogeneous Markov-Based

Reliability Model

In [14], Cheung proposed a reliability model based on discrete-time Markov chains to

model homogeneous software, in which common system structures such as branching and

module-to-module transitions were modeled. A system with k components is modeled

with k mapping states, where state s, has component c, activated, 1 < i < k. For generality,

a system is considered to have only a single initial state s\ and a single final state st with

7i\°- 1. Let Ri be the reliability of component /, and Pij be the transition probability from

component c, to component c;. A non-negative stochastic matrix T is standardized as

follows:

s " 1 0

i

0 "
' 0 ' ■ 1 - / ? , ■

II

0 1 0 , f l . =
0

* B2 — :

1 - « t - l

A A M . Rk. I - Rk

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

D\ = [1] and D2 = [1] are irreducible matrices, because any state in the irreducible matrix

does not transit to any other state outside the matrix. M is a transient matrix whose

transition process will eventually reach either state 5 or state F. States 5 and F are two

absorbing states, representing the successful output state and failure state, respectively.

Software operates successfully when the system reaches 5; otherwise, it fails when

the system reaches F. Once the system reaches an absorbing state, the system will not

move on to any other states but itself. Therefore, the transition probability from S to S is

equal to 1, so is from F to F. In this model, only the final state s* can reach the successful

state 5 with probability /?*. If component c, is not always reliable, the probability from

state Si to state F is equal to 1 The entries of a k x it transition matrix M are calculated

as follows, and M (i,j) is the entry value of ith row and jth column.

f M (/, /') = R, P.., state s, reaches state s , and i * k
' . . 1 , for I < i , j < k {BU[M (1, j) = 0, otherwise

The system reliability is computed as R = Q(1, k)Rt, which is the probability of

considering all possible transitions from the initial state si to the final state s* times the

component reliability Rt of component c* in 5*. Here,

0(1. k) = /(l, k) + M(1, k) + M \l, k) + Af3(l, k) + = I M k (1,*) = (-1)*+1 ^ M)k/
i=0 | / -Af |

System reliability R = <2(1, k)Rk = (- 1)* 1 p / f * {B2}
|/ — M[

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7 is a & x £ identity matrix and |7 - M\ is the determinant of matrix (7 - M). |(/ - M)u\ is the

determinant of the minor matrix, excluding the last row and the first column of the matrix

(7 - M). Since the constructed stochastic matrix T is standardized, |7 - Af| * 0.

Cheung’s model considers homogeneous component transitions, branching, and

looping. However, this approach is insufficient to model complex structures and

heterogeneous architectures, because some structures can have multiple activities taking

place simultaneously or require some specific actions based on the running situations. For

example, a parallel architecture has multiple components running concurrently to

improve performance, a fault tolerant system has backup components compensating the

failure of the others to improve reliability, or a call-and-return structure that has caller

components invoke callee components many times to eliminate code redundancy.

Furthermore, this homogeneous model limits a component to only one state, and assumes

that a software process follows a Markov process. Thus, it hinders the modeling of

execution history, and most deterministic software behaviors.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix C

An Example of Traditional Markov-

Based Software Reliability Modeling

In this section, a simple system is used to demonstrate the utilization of traditional

Markov-based reliability models to compute reliability of homogeneous software. This

sample system consists of three components A, B, and C, as shown in Figure 21.

Basically, this software operates failure free when component A eventually transits to

component C, and then component C produces a correct outcome. Assume that

components are independent of each other and their component reliabilities RA, Rb, and

Rc are 0.9, 0.95 and 1.0, respectively. Furthermore, we know that component A has a

chance of 0.6 of transiting to component fl, while there is also a chance of 0.4 of

transiting to component C. We will first show the computation of software reliability

based on probability theory, and then model the system into a Markov model and yield

the same reliability.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 21: A sample system

C.l Using Probability Theory

Given this software system in Figure 21, there are two possible execution paths from A to

C. One is from A to B and then from B to C, and the other is from A directly to C. The

first execution path requires components A, B, and C, all being reliable, which can be

computed as RaRbRc — 0.9 x 0.95 x 1.0 = 0.855. As we know, the chance of going

through the first execution path is 0.6. Therefore, the reliability of the first execution path

is equal to 0.6 x 0.855. Similarly, the second execution path requires components A , and

C, both being reliable, which can be computed as RARc = 0.9 x 1.0 = 0.9. The chance of

going through the second execution path is 0.4. The reliability of the second execution

path is equal to 0.4 x 0.9. Software reliability is the sum of the reliabilities of all the

execution paths. Therefore, system reliability R is equal to 0.6 x 0.855 + 0.4 x 0.9 =

0.873.

C.2 Using Homogeneous Markov-Based Reliability Model

Based on the same example in Figure 21, our first step is to construct the stochastic

matrix T, which is standardized as shown below. In addition to states SA, Sb, and Sc for

components A, B, and C, two absorbing states S and F are added to represent a successful

state and a failure state.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

T =

S

F

5 F 5 ,
1 0 0 0 0 ‘

0 1 0 0 0
0 0.1 0 0.54 0.36 '0 0.54 0.36'
0 0.05

0
0 0.95 M = 0 0 0.95

1 0 o 0 0 0 0 0

Here, we take row three of the above stochastic matrix T as an example to illustrate

how to fill in the value of an entry. Component A cannot produce the correct outcome

itself, so the probability from SA to S is equal to 0. Component A has 0.9 component

reliability, so that there is a 0.1 chance of going to the failure state F. Component A does

not transit to itself, so that SA to SA is equal to 0. The probability from S..\ to SB is equal to

0.54, which is the possibility that component A transits to component B under the

condition that A functions reliably. Similarly, the entry from SA to Sc is equal to 0.36,

which is the possibility that component A transits to component C under the condition

that A functions reliably.

"i 0 o ' 0 0.54 0.36' 0 0 0.513' 0 0 o '

IIIIo
0 1 0 A/1 = 0 0 0.95 u n 0 0 0 5 n 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0

A/3 = M * = A/5 = =A /~

LetQ = M° + M X + — h A/°

R = Q(l,3)Rc = 0.873
Q =

1 0.54 s0.873
0 1 ^ 9 5
0 0 1

To compute software reliability, we are interested in the transient matrix M

consisting of only those three states SA, SB, and Sc. Each entry Xf(iJ) in the matrix M is

the probability from one transient state s, to another transient state Sj with only one single

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

transition. M2 is the multiplication of M by M, and each entry in M2 represents the

probability of proceeding through two transitions. Take the 0.513 in the entry of M2 (1,3)

for example, it means that 0.513 is the probability from A to component C by going

through two transitions. In this case, it is from A to B, and then B to C, equal to the

chance of 0.6 times the reliability 0.855 of the previous first execution path. Similarly,

each entry in A/3 is the probability of going through three transitions. By summing up A/0,

Af1 to NT together, we obtain a matrix Q. Each entry value in Q depicts the probability of

going through all possible numbers of transitions from one state to the other. Take Q(l,3)

for example, the entry value 0.873 is the probability of covering all possible execution

paths, including the one from A to B to C, and the other one from A directly to C.

Software reliability R is then computed as Q(l,3)/?c. which is the probability of reaching

the exit state Sc, and the reliability of component C that operates failure free.

This sample system is rather simple. However, if state transitions encounter a loop,

it becomes infeasible to do all the matrix multiplication and summation. For example,

component B can also transit back to component A. Therefore, we can take advantage of

Cheung’s formula {B2}, derived from linear algebra, to compute software reliability as

follows. Note that |/ - Af| * 0 because the stochastic matrix T is standardized.

R = |M '(1 .3)* c = <2(1, 3)RC = (- i) J
1=0 «- ' / I J ___ m £ I

= (-l)4(0.873)(l)/l I
= 0.873

1 -0.54 -0.36' -Q54 -0 3 6
7-Af = 0 1 -0.95 (/-A*)3.I =

1 - a 9 5 _0 0 1

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

1. Abd-AUah, A., "Architecture Description Languages State of the Art

Presentation," In Knowledge Summary o f the USC-CSE Focused Workshop on

Software Architectures, Center for Software Engineering, University of Southern

California, Los Angeles, CA. USA, June 1994.

2. Abd-Allah A., “Composing Heterogeneous Software Architectures” , Technical

Report USC-CSE-95-502, University of Southern California, Los Angeles, CA. USA,

1995.

3. Abowd G., Allen R., and Garlan D., “Formalizing Style to Understand Descriptions

of Software Architecture”, Technical Report CMU-CS-95-111, Carnegie Mellon

University, Pittsburgh, PA. USA, January 1995.

4. Allen R. and Garlen D., ‘Towards Formalized Software Architectures”, Technical

Report CMU-CS-92-163, Carnegie Mellon University, Pittsburgh, PA. USA, July

1992.

5. Allen R. and Garlan D., “A Formal Approach to Software Architectures”, in

Proceedings o f 3rd IFIP Working Conference on Dependable Computing fo r Critical

Applications, Mondello, Sicily, Italy, September 14-16, 1992.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6. Allen R. and Garlan D., “Formal Connectors”, Technical Report CMU-CS-94-1I5,

Carnegie Mellon University, Pittsburgh, PA. USA, 1994.

7. Allen R., Garlan D., “Formalizing Architectural Connection”, In Proceedings o f the

Sixteenth International Conference on Software Engineering (ICSE), Sorrento, Italy,

pp 71-80, May 1994.

8. Allen R., Garlan D., “Beyond definition/use: Architectural interconnection”, In

Proceedings o f the ACM Interface Definition Language Workshop, 29(8), SIGPLAN

Notices, August 1994.

9. Berman A. and Plemmons R. J., Nonnegative Matrices in the Mathematical Science,

Academic Press Inc., New York, 1979.

10. Binns P., Englehart M., Jackson M., Vestal S., “Domain-Specific Software

Architectures for Guidance, Navigation, and Control” , International Journal o f

Software Engineering and Knowledge Engineering, 6(2), 1996.

11. Boehm B. W. and Scherlis W. L., “Megaprogramming”, In Proceedings o f the

DARPA Software Technology Conference, April 1992.

12. Brooks F. P., Jr., “No Silver Bullet: Essence and Accidents of Software Engineering”,

IEEE Computer, 20(4), pp. 10-19, April 1987.

13. Chen M. H., Lyu M. R., Rego V. J., Mathur A. P. and Wong E. W„ “Effect of Code

Coverage on Software Reliability Measurement”, IEEE Transactions on Reliability,

50(2), pp. 165-170, June 2001.

14. Cheung R. C., “A User-Oriented Software Reliability Model”, IEEE Transactions On

Software Engineering, 6(2), pp. 118-125, March 1980.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

15. Clark B. K., “Domain Specific Software Architecture State of the Art Presentation”,

In Proceedings o f the USC-CSE Focused Workshop on

Software Architectures, Center for Software Engineering, University of Southern

California, Los Angeles, CA. USA, June 1994.

16. Cormen H. T., Leiserson E. C., Rivest L. R., Introduction to Algorithms, McGraw-

Hill Book Company, Tenth Edition, pp. 401-403, 1993.

17. DeRemer F. and Kron H.H., “Programming-in-the-Large versus Programming-in-the-

Small”, IEEE Transactions on Software Engineering, SE-2, pp. 80-86, June 1976.

18. Duane, J. T., “Learning Curve Approach to Reliability Monitoring”, IEEE

Transactions on Aerospace, 2, pp. 563-566, 1964.

19. Dutton G., Sims D., “Patterns in OO Design and Code Could Improve Reuse.” IEEE

Software, 11(3), pp. 101, May 1994.

20. Englehart M., Jackson M., “ControlH: An Algorithm Specification Language and

Code Generator”, IEEE Control Systems Magazine, April 1995.

21. Farr W„ “Software Reliability Modeling Survey”, In M. R. Lyu editor, Handbook o f

Software Reliability Engineering, McGraw-Hill Publishing Company and IEEE

Computer Society Press, New York, pp. 71-117, 1996.

22. Flowers S., Software Failure: Management Failure, Amazing Stories and Cautionary

tales, John Wiley & Sons Ltd, 1996.

23. Gacek C., “Domain Specific Software Architecture Based Reuse State of the Art

Presentation”, In Knowledge Summary o f the USC-CSE Focused Workshop on

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Reuse, Center for Software Engineering, University of Southern California,

Los Angeles, CA. USA, October 1994.

24. Garlan D., ‘T he Role of Formal Reusable Frameworks”, In ACM SIGSOFT Softvjare

Engineering Notes: Proceedings o f Formal Methods in Software Development, 15(4),

pp. 42-44, September 1990.

25. Garlan D., “What Is Style?”, In Proceedings o f First International Workshop on

Software Architecture, Saarbruecken, Germany, April 1995.

26. Garlan D., Allen R., and Ockerbloom J., “Exploiting Style in Architectural Design

Environments”, In Proceedings o f the Second ACM SIGSOFT Symposium on

Foundations o f Software Engineering, 19(5), New Orleans, Louisiana, December

1994.

27. Garlan D. and Shaw M., “An Introduction to Software Architecture”, In V. Ambriola

and G. Tortora, editors, Advances in Software Engineering and Knowledge

Engineering, volume 1. World Scientific Publishing Company, 1993.

28. Goel, A. L. and Okumoto K., “An Analysis of Recurrent Software Errors in a Real-

Time Control System”, In Proceedings o f the 1978 annual ACM Conference, pp. 496-

501, 1978.

29. Goel, A. L. and Okumoto K., ‘Time-Dependent Error-Detection Rate Model for

Software Reliability and other Performance Measures”, IEEE Transactions on

Reliability, 28(3), pp. 206-211, 1979.

30. Gokhale S. S., Lyu M. R., and Trivedi K. S., “Reliability Simulation of Component-

Based Software Systems”, In Proceedings o f Ninth International Symposium on

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Reliability Engineering (ISSRE), ppl92-201, Paderbom, Germany,

November 1998.

31.Gokhale S. S., Wong W. E., Trivedi K. S., and Horgan J. R., “An Analytical

Approach to Architecture-based Software Reliability Prediction”, In Proceedings o f

IEEE International Computer Performance and Dependability Symposium (IPDS),

Durham, North Carolina, September 1998.

32. Hamlet D., Mason D., and Woit D., ‘Theory of Software Reliability Based on

Components”, In Proceedings o f 23rd International Conference on Software

Engineering (ICSE), Toronto, Ontario, Canada, May 2001.

33. Hoare, C. A. R. “Communicating Sequential Processes”, Communications o f the

ACM , 21(8), pp. 666-677, August 1978.

34. Hudson, G. R., “Program Errors as a Birth and Death Process”, Technical Report SP-

3011, System Development Corporation, Santa Monica, CA. USA, 1967.

35. Institute of Electrical and Electronics Engineers, Software Engineering Standards,

Institute of Electrical and Electronics Engineers, 3rd Edition, New York, NY. USA,

1989.

36. Iannino A., Musa J. D., Okumoto K. and Littlewood B., “Criteria for Software

Reliability Model Comparisons”, IEEE Transactions on Software Engineering, 10(6),

pp. 687-691, 1984.

37. Inverardi P. and Wolf A. L., “Formal Specification and Analysis of Software

Architectures Using the Chemical Abstract Machine Model”, IEEE Transactions on

Software Engineering, 21(4), April 1995.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

38. Jelinski Z., and Moranda P. B., Software Reliability Research, (W. Freiberger,

Editor), Statistical Computer Performance Evaluation, Academic, New York, pp.

465-484, 1972.

39. Johnson A. M., Jr. and Malek, M., “Survey of Software Tools for Evaluating

Reliability, Availability, and Serviceability”, ACM Computing Surveys, 20(4), pp.

227-269, December 1988.

40. Jones A. K., ‘T he Maturing of Software Architecture”, In Proceedings o f Software

Engineering Symposium, Software Engineering Institute, Pittsburgh, PA, August

1993.

41. Kremer, W., “Birth-Death and Bug Counting”, IEEE Transactions on Reliability,

32(1), pp.37-47, 1983.

42. Krishnamurthy S. and Mathur A. P., “On the Estimation of Reliability of a Software

System Using Reliabilities of its Components”, In Proceedings o f Eighth

International Symposium on Software Reliability Engineering (ISSRE), pp 146-155,

Albuquerque, NM. USA, November 1997.

43. Kyparisis, J. and Singpurwalla, N. D., “Bayesian Inference for the Weibull Process

with Applications to Assessing Software Reliability Growth and Predicting Software

Failures”, Computer Science and Statistics, 16th Symposium Interface, Atlanta,

Georgia, pp. 57-64, 1984.

44. Laprie J-C., Kanoun K., Beounes C., Kaaniche M., ‘T he KAT (Knowledge-Action-

Transformation) Approach to the Modeling and Evaluation of Reliability and

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Availability Growth”, IEEE Transactions on Software Engineering, 17(4), pp. 370-

382, April 1991.

43. Laprie J-C. and Kanoun K., “Software Reliability and System Reliability”, Handbook

o f Software Reliability Engineering, pp. 27-70, McGraw-Hill, New York, 1996.

46. Li J. J., Micallef J., and Horgan J. R., “Automatic Simulation to Predict Software

Architecture Reliability”, In Proceedings o f Eighth International Symposium on

Software Reliability Engineering (ISSRE), pp. 168-179, Albuquerque, NM. USA,

November 1997.

47. Littlewood B. and Verrall J. L., “A Bayesian Reliability Growth Model for Computer

Software”, Journal Royal Statistical Society-Series C, 22(3), pp. 332-346, 1973.

48. Littlewood B., “A Reliability Model for Systems with Markov Structure”, Applied

Statistics, 24(2), pp. 172-177, February 1975.

49. Littlewood B., “Software Reliability Model for Modular Program Structure”, IEEE

Transactions on Reliability, 28(3), pp. 241-246, August 1979.

50. Littlewood B., “Stochastic Reliability-Growth: A Model for Fault-Removal in

Computer-Programs and Hardware-Design”, IEEE Transactions on Reliability, 30(4),

pp. 313-320, October 1981.

51. Liu G., “A Bayesian Assessing Method of Software Reliability Growth”, Reliability

Theory and Applications, S. Osaki and J. Cao (Editors), World Scientific, pp. 237-

244, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52. Luckham D., Augustin L., Kenney J., Vera J., Bryan D., Mann W., “Specification and

Analysis of System Architecture Using Rapide”, IEEE Transactions on Software

Engineering, 21(4), pp. 336-355, April 1995.

53. Medvidovic N., Oreizy P., Robbins J. E., and Taylor R. N., “Using Object-Oriented

Typing to Support Architectural Design in the C2 Style”, In Proceedings o f the

Fourth ACM SIGSOFT Symposium on Foundations o f Software Engineering (FSE4),

San Francisco, CA. USA, October 1996.

54. Medvidovic N., Oreizy P., and Taylor R. N., “Reuse of Off-the-Shelf Components in

C2-Style Architectures”. In Proceedings o f 19th International Conference on

Software Engineering (ICSE), Boston, MA. USA, May 1997.

55. Mettala E. and Graham M. H., “T he Domain-Specific Software Architecture

Program”, Technical Report CMU/SEI-92-SR-9, June 1992.

56. Moranda, P. B., “Perditions of Software Reliability During Debugging”, In

Proceedings o f Annual Reliability and Maintainability Symposium, Washington, DC.

USA, pp. 327-332, 1975.

57. Musa J. D., “A Theory of Software Reliability and its Application”, IEEE

Transactions on Software Engineering, 1(3), pp. 312-327, 1975.

58. Musa J. D., Iannino A., and Okumoto K., Software Reliability: Measurement,

Prediction, Application, McGraw-Hill Book Company, New York, 1987.

59. Musa J. D. and Okumoto K., “Software Reliability Models: Concepts, Classification,

Comparisons, and Practice”, (J. K. Skwirzynski, Editor), Electronic Systems

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Effectiveness and Life Cycle Costing, NATO ASI Series, F3, Springer-Verlag,

Heidelberg, pp. 395-424, 1983.

60. Musa J. D. and Okumoto K., “A Logarithmic Poisson Execution Time Model for

Software Reliability Measurement”, In Proceedings o f Seventh International

Conference on Software Engineering (ICSE), Orlando, FL. USA, pp. 230-238, March

1984.

61. Perry D. E. and Wolf A. L., “Foundations for the Study of Software Architecture”, In

Proceedings o f the ACM Special Interest Group on Software Engineering

(SIGSOFT): Software Engineering Notes, 17(4), pp. 40-52, October, 1992.

62. Ross, S. K., Stochastic Processes, John Wiley & Sons, New York, 1983.

63. Royce W„ Royce W., “Software Architecture: Integrating Process and Technology”,

TRW Space & Defense, 1991.

64. Schick, G. J. and R. W. Wolverton, “Assessment of Software Reliability”, In

Proceedings o f Operations Research, Physica-Verlag, Wurzburg-Wien, pp. 395-422,

1973.

65. Schick, G. J. and R. W. Wolverton, “An Analysis of Competing Software Reliability

Models”, IEEE Transactions on Software Engineering, 4(2), pp. 104-120, 1978.

66. Schneidewind, N. F., “An Approach to Software Reliability Prediction and Quality

Control”, In 1972 Fall Joint Computer Conference, AFIPS Conference Proceedings,

41, AFIPS Press, Montvale, NJ. USA, pp. 837-847, 1972.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

67. Schneidewind, N. F., “Analysis of Error Processes in Computer Software”, In

Proceedings o f 1975 International Conference on Reliable Software, Los Angeles,

CA. USA, pp. 337-346, 1975.

68. Shaw M., “Larger Scale Systems Require Higher-Level Abstractions”, In ACM

SIGSOFT Software Engineering Notes: Proceedings o f Fifth International Workshop

on Software Specification and Design, 14(3), pp. 143-146, Pittsburgh, PA. USA, May

1989.

69. Shaw M., “Heterogeneous Design Idioms for Software Architecture.” In Proceedings

o f Sixth International Workshop on Software Specification and Design, pp. 158-165,

Como, Italy, October 1991.

70. Shaw M., “Software Architectures for Shared Information Systems.” Technical

Report CMU-CS-93-126, Carnegie Mellon University, Pittsburgh, PA. USA, March

1993.

71. Shaw M. and Garlan D., “Characteristics of Higher-level Languages for Software

Architecture”, Technical Report CMU-CS-94-210, Carnegie Mellon University,

Pittsburgh, PA. USA, December 1994.

72. Shaw M., DeLine R., Klein D., Ross T., Young D., Zelesnik G., “Abstractions for

Software Architecture and Tools to Support Them.” IEEE Transactions on Software

Engineering, 21(4), pp. 314-335, April 1995.

73. Shooman, M. L., “Probabilistic Models for Software Reliability Prediction”, (W.

Freidberger, Editor), Statistical Computer Performance Evaluation, Academic, New

York, pp. 485-502, 1972.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

74. Spivey J. M., “An Introduction to Z and Formal Specification”, Software Engineering

Journal, 4(1), pp. 40-50, January 1989.

75. Spivey J. M., The Z Notation: A Reference Manual, Englewood Cliffs, New Jersey:

Prentice-Hall, 1989.

76. Taylor R. N., Tracz W., Coglianese L., “Software Development Using Domain-

Specific Software Architectures”, Technical Report ADAGE-UCI-94-01C, University

of California at Irvine, Irvine, CA. USA, 1994.

77. Taylor R. Medvidovic N., N., Anderson K. M., Whitehead Jr. E. J., Robbins J. E.,

Nies K. A., Oreizy P., and Dubrow D. L., “A Component and Message-based

Architectural Style for GUI Software”, IEEE Transactions on Software Engineering,

22(6), pp. 390-406, June 1996.

78. Terry A., Papanagopoulos G., Devito M., Coleman N., Erman L., “An Annotated

Repository Schema”, V.3 Working Draft, 1993.

79. Terry A., Hayes-Roth, F., Erman, L., Coleman, N., and Hayes-Roth, B., “Overview of

Teknowledge’s Domain-Specific Software Architecture Program”, In ACM SIGSOFT

Software Engineering Notes, 19(4), pp 68-76, October 1994.

80. Tracz W., "LILEANNA: A Parameterized Programming Language", Reprinted from

In Proceedings o f the 2nd International Workshop on Software Reuse, Lucca, Italy,

pp. 66-78, March 1993.

81. Tracz W„ “DSSA (Domain-Specific Software Architecture) Pedagogical Example”,

Loral Contributed Documentation and Technical Report, ADAGE-LOR-94-13, April

1995.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

82. Tracz W., “DSSA frequently asked questions (FAQ)”, In ACM SIGSOFT Software

Engineering Notes, 19(2), pp. 52-56, June 1995.

83. Vestal S., “A Cursory Overview and Comparison of Four Architecture Description

Languages”, Technical Report, Honeywell Technology Center, Minneapolis, MN.

USA, February 1993.

84. Wagoner, W. L., ‘The Final Report on a Software Reliability Measurement Study”,

Technical Report TOR-0074(4112)-1, Aerospace Corporation, El Segundo, CA.

USA, August 1973.

85. Whittaker J. A., “Markov Analysis of Software Specifications”, ACM Transactions

on Software Engineering and Methodology, 2(1), pp 93-106, January 1993.

86. Yamada, S., Ohba M. and Osaki S., “S-Shaped Reliability Growth Modeling for

Software Error Detection”, IEEE Transactions on Reliability, 32(5), pp. 475-478,

December 1983.

87. Yamada, S. and Osaki S., “Software Reliability Growth Modeling: Models and

Assumptions”, IEEE Transactions on Software Engineering, 11(12), pp. 1431-1437,

December 1985.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

